Cation Ordering in Li[Ni x Mn x Co(1–2x)]O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-ray Absorption Spectroscopy, and Electrochemical Study
Several members of the compositional series Li[Ni x Mn x Co(1–2x)]O2 (0.01 ≤ x ≤ 1/3) were synthesized and characterized. X-ray diffraction results confirm the presence of the layered α-NaFeO2-type structure, while X-ray absorption near-edge spectroscopy experiments verify the presence of Ni2+, Mn4+...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2007-12, Vol.19 (25), p.6277-6289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several members of the compositional series Li[Ni x Mn x Co(1–2x)]O2 (0.01 ≤ x ≤ 1/3) were synthesized and characterized. X-ray diffraction results confirm the presence of the layered α-NaFeO2-type structure, while X-ray absorption near-edge spectroscopy experiments verify the presence of Ni2+, Mn4+, and Co3+. Their local environment and short-range ordering were investigated by using a combination of 6Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and neutron pair distribution function (PDF) analysis, associated with reverse Monte Carlo (RMC) calculations. The 6Li MAS NMR spectra of compounds with low Ni/Mn contents (x ≤ 0.10) show several well-resolved resonances, which start to merge when the amount of Ni and Mn increases, finally forming a broad resonance at high Ni/Mn contents. Analysis of the 6Li MAS NMR 6Li[Ni0.02Mn0.02Co0.96]O2 spectrum, is consistent with the formation of Ni2+ and Mn4+ clusters within the transition-metal layers, even at these low-doping levels. The oxidation state of Ni in this high Co content sample strongly depends upon the Li/transition metal ratio of the starting materials. Neutron PDF analysis of the highest Ni/Mn content sample Li[Ni1/3Mn1/3Co1/3]O2 shows a tendency for Ni cations to be close to Mn cations in the first coordination shell; however, the Co3+ ions are randomly distributed. Analysis of the intensity of the “LiCoO2” resonance, arising from Li surrounded by Co3+ in its first two cation coordination shells, for the whole series provides further evidence for a nonrandom distribution of the transition-metal cations. The presence of the insulator-to-metal transition seen in the electrochemical profiles of these materials upon charging correlates strongly with the concentration of the “LiCoO2” resonance. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm702241a |