The Ultrafast Photophysics of Pentacene Coupled to Surface Plasmon Active Nanohole Films

Pentacene, a model organic semiconductor, is shown to couple with surface plasmon (SP) active silver nanohole films to produce enhanced excited-state absorption. In addition, the dynamics of triplet formation and decay on a subpicosecond time scale are altered due to the coupling of the excited stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-04, Vol.113 (16), p.6871-6877
Hauptverfasser: Johnson, Justin C, Reilly, Thomas H, Kanarr, Allison C, van de Lagemaat, Jao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pentacene, a model organic semiconductor, is shown to couple with surface plasmon (SP) active silver nanohole films to produce enhanced excited-state absorption. In addition, the dynamics of triplet formation and decay on a subpicosecond time scale are altered due to the coupling of the excited state with the resonant SP, possibly involving the interplay between singlet fission and triplet−triplet annihilation. Shifting the resonance of the SP with respect to the pentacene excitations and introducing a dielectric spacer between pentacene and metal lead to changes in the spectra and dynamics that can be explained qualitatively. These results are compared with recent literature reports of molecule/plasmon hybridization and are placed in context with efforts to utilize SPs for enhanced solar energy conversion.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp901419s