Eulerian description of high-order bounce-back scheme for lattice Boltzmann equation with curved boundary
We propose an Eulerian description of the bounce-back boundary condition based on the high-order implicit time-marching schemes to improve the accuracy of lattice Boltzmann simulation in the vicinity of curved boundary. The Eulerian description requires only one grid spacing between fluid nodes when...
Gespeichert in:
Veröffentlicht in: | European journal of physics 2009-04, Vol.171 (1), p.3-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an Eulerian description of the bounce-back boundary condition based on the high-order implicit time-marching schemes to improve the accuracy of lattice Boltzmann simulation in the vicinity of curved boundary. The Eulerian description requires only one grid spacing between fluid nodes when second-order accuracy in time and space is desired, although high-order accurate boundary conditions can be constructed on more grid-point support. The Eulerian description also provides an analytical framework for several different interpolation-based boundary conditions. For instance, the semi-Lagrangian, linear interpolation boundary condition is found to be a first-order upwind discretization that changes the time-marching schemes from implicit to explicit as the distance between the fluid boundary node and the solid boundary increases. |
---|---|
ISSN: | 1951-6355 0143-0807 1951-6401 1361-6404 |
DOI: | 10.1140/epjst/e2009-01004-0 |