Line Intensities for the v1, v3, and v1 + v3 Bands of 34SO2

Using both high resolution (0.0018 cm-1) and medium resolution ( 0.112 cm-1) Fourier transform spectra of an enriched 34S (95.3%) sample of sulfur dioxide it has been possible to accurately measure a large number of individual line intensities for some of the strongest of the SO2 bands, i.e. ν1, ν3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2009-06, Vol.110 (9-10)
Hauptverfasser: Flaud, Jean-marie, Lafferty, Walter J., Sams, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using both high resolution (0.0018 cm-1) and medium resolution ( 0.112 cm-1) Fourier transform spectra of an enriched 34S (95.3%) sample of sulfur dioxide it has been possible to accurately measure a large number of individual line intensities for some of the strongest of the SO2 bands, i.e. ν1, ν3 and ν1+ν3. . These intensities were least squares fitted using a theoretical model which takes into account the vibration-rotation interactions linking the upper energy levels where needed, and, in this way, expansions of the various transition moment operators were determined. The Hamiltonian parameters determined in previous analyses [Lafferty WJ, Flaud J.-M., Sams R.L., Ngom El H A. High resolution analysis of the rotational levels of the (000), (010), (100), (001),(020), (110) and (011) vibrational states of 34S16O2, J. Mol. Spectrosc. (2008), doi:10.1016/j.jms.2008.06.013; Lafferty WJ, Flaud J-M, Ngom El H A, Sams, L. 34S16O2: High resolution analysis of the (030), (101),(111), (002) and (201) vibrational states: Determination of equilibrium rotational constants of sulfur dioxide and anharmonic vibrational constants. J Mol Spectrosc, submitted ] together with these moments were then used to generate synthetic spectra for the bands studied and their corresponding hot bands providing one with an extensive picture of the absorption spectrum of 34SO2 in the spectral domains, 8.7, 7.4 and 4 μm.
ISSN:0022-4073
1879-1352
DOI:10.1016/j.jqsrt.2008.12.003