Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements

The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2008-10, Vol.3 (10), p.626-631
Hauptverfasser: Espinosa, Horacio D, Peng, Bei, Locascio, Mark, Zapol, Peter, Li, Shuyou, Mielke, Steven L, Schatz, George C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are ∼80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells. The mechanical properties of carbon nanotubes rarely match the values predicted by theory owing to a combination of artefacts introduced during sample preparation and inadequate measurements. However, by avoiding chemical treatments and using high-resolution imaging, it is possible to obtain values of the mean fracture strength that exceed previous values by approximately a factor of three.
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2008.211