Possible weak temperature dependence of electron dephasing

The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levelscaused by inelastic electron-defect scattering. The second mechanism is due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter Condensed matter, 2002-10, Vol.66 (16), Article 165326
Hauptverfasser: Afonin, V. V., Bergli, J., Galperin, Y. M., Gurevich, V. L., Kozub, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levelscaused by inelastic electron-defect scattering. The second mechanism is due to violation of the time reversal symmetry caused by time-dependent fluctuations of the scattering potential. These fluctuations originate from an interaction between the dynamic defects and conduction electrons forming a thermal bath. The first contribution to the dephasing rate saturates as temperature decreases. The second contribution does not saturate, although its temperature dependence is rather weak, T{sub 1/3}. The quantitative estimates based on the experimental data show that these mechanisms considered can explain the weak temperature dependence of the dephasing rate in some temperature interval. However, below some temperature dependent on the model of dynamic defects the dephasing rate tends rapidly to zero. The relation to earlier studies of the dephasing caused by the dynamical defects is discussed.
ISSN:0163-1829
1095-3795
DOI:10.1103/PhysRevB.66.165326