Newton's Method for Large Bound-Constrained Optimization Problems

We analyze a trust region version of Newton's method for bound-constrained problems. Our approach relies on the geometry of the feasible set, not on the particular representation in terms of constraints. The convergence theory holds for linearly constrained problems and yields global and superl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 1999-01, Vol.9 (4), p.1100-1127
Hauptverfasser: Lin, Chih-Jen, Moré, Jorge J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze a trust region version of Newton's method for bound-constrained problems. Our approach relies on the geometry of the feasible set, not on the particular representation in terms of constraints. The convergence theory holds for linearly constrained problems and yields global and superlinear convergence without assuming either strict complementarity or linear independence of the active constraints. We also show that the convergence theory leads to an efficient implementation for large bound-constrained problems.
ISSN:1052-6234
1095-7189
DOI:10.1137/S1052623498345075