Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped Bi-2223 and Ag/Bi-2223 systems

Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700–815°C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. C, Superconductivity Superconductivity, 1995-07, Vol.249 (3), p.396-402
Hauptverfasser: Tetenbaum, M., Hash, M., Tani, B.S., Luo, J.S., Maroni, V.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700–815°C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 750 to 815°C and at oxygen partial pressures ranging from ∼ 0.02 to 0.2 atm should preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of the partial molar quantities Δ S ̄ ( O 2) and Δ H ̄ ( O 2) indicate that the plateau regions in the plot of oxygen partial pressure versus oxygen stoichiometry ( x) can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm.
ISSN:0921-4534
1873-2143
DOI:10.1016/0921-4534(95)00299-5