Estimating Regional Changes in Soil Carbon with High Spatial Resolution

To manage lands locally for C sequestration and for emissions reductions, it is useful to have a system that can monitor and predict changes in soil C and greenhouse gas emissions with high spatial resolution. We are developing a C accounting framework that can estimate C dynamics and net emissions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil Science Society of America journal 2008-03, Vol.72 (2), p.285-294
Hauptverfasser: West, T.O, Brandt, C.C, Wilson, B.S, Hellwinckel, C.M, Tyler, D.D, Marland, G, De la Torre Ugarte, D.G, Larson, J.A, Nelson, R.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To manage lands locally for C sequestration and for emissions reductions, it is useful to have a system that can monitor and predict changes in soil C and greenhouse gas emissions with high spatial resolution. We are developing a C accounting framework that can estimate C dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil C and to estimate where these changes are likely to occur at a subcounty (30- by 30-m) resolution. We applied this framework component to a midwestern region of the United States that consists of 679 counties approximately centered around Iowa. We estimated the 1990 baseline soil C to a maximum depth of 3 m for this region to be 4117 Tg. Cumulative soil C accumulation of 70.3 Tg was estimated for this region between 1991 and 2000, of which 33.8 Tg is due to changes in tillage intensity. Without accounting for soil C loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil C associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil C sequestration practices. This C accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently account for alternating annual trends in land management and associated C stocks and fluxes.
ISSN:0361-5995
1435-0661
DOI:10.2136/sssaj2007.0113