Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy
Bi was investigated as a possible surfactant for growth of GaAs 1− x N x layers on (1 0 0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2007-06, Vol.304 (2), p.402-406 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 2 |
container_start_page | 402 |
container_title | Journal of crystal growth |
container_volume | 304 |
creator | Liu, Ting Chandril, Sandeep Ptak, A.J. Korakakis, D. Myers, T.H. |
description | Bi was investigated as a possible surfactant for growth of GaAs
1−
x
N
x
layers on (1
0
0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects. |
doi_str_mv | 10.1016/j.jcrysgro.2007.04.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_915662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024807003910</els_id><sourcerecordid>29769119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</originalsourceid><addsrcrecordid>eNqFkU9v3CAQxVGVSt2k_QoVOTQ3u4BZbG75o3YTKWov7RlhPCSsbNgAbutvX6xN1Nx6AaT5PebNPIQ-UlJTQsXnfb03cUkPMdSMkLYmvCa0eYM2tGubaksIO0GbcrKKMN69Q6cp7QkpSko2yF-7NM35Eac5Wm2y9hmDtWBywjZEvNNX6RvWfsA9xGUc3TzhIRycf8DBvqru9J1f38XFb4_7BU9hBDOPOhahnjAcXNZ_lvfordVjgg_P9xn6-fXLj5vb6v777u7m6r4yjZS5ooZZyRptuWa2Mw1ltBMMeNvyBgbZW8OZtZLaQUAjOSfW9LBtWSd4T6VlzRk6P_4bUnYqGZfBPJrgfRlMSboVYmUujswhhqcZUlaTSwbGUXsIc1JMtkJSKgsojqCJIaUIVh2im3RcFCVqjUDt1UsEao1AEa5KBEX46bmDTkaPNmpvXPqn7jomxXblLo8clJX8chBXx-ANDC6uhofg_tfqL3h0oGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29769119</pqid></control><display><type>article</type><title>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Ting ; Chandril, Sandeep ; Ptak, A.J. ; Korakakis, D. ; Myers, T.H.</creator><creatorcontrib>Liu, Ting ; Chandril, Sandeep ; Ptak, A.J. ; Korakakis, D. ; Myers, T.H. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Bi was investigated as a possible surfactant for growth of GaAs
1−
x
N
x
layers on (1
0
0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2007.04.013</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Doping ; A1. Surface processes ; A3. Molecular beam epitaxy ; B2. Semiconducting III–V materials ; BERYLLIUM ; BISMUTH ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; MATERIALS SCIENCE ; Methods of deposition of films and coatings; film growth and epitaxy ; MOLECULAR BEAM EPITAXY ; Molecular, atomic, ion, and chemical beam epitaxy ; Other semiconductors ; Physics ; SOLAR ENERGY ; Solar Energy - Photovoltaics ; Specific materials ; SURFACTANTS ; Theory and models of film growth ; Thermal instruments, apparatus and techniques ; Thermometry</subject><ispartof>Journal of crystal growth, 2007-06, Vol.304 (2), p.402-406</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</citedby><cites>FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2007.04.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18829653$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/915662$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Chandril, Sandeep</creatorcontrib><creatorcontrib>Ptak, A.J.</creatorcontrib><creatorcontrib>Korakakis, D.</creatorcontrib><creatorcontrib>Myers, T.H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</title><title>Journal of crystal growth</title><description>Bi was investigated as a possible surfactant for growth of GaAs
1−
x
N
x
layers on (1
0
0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.</description><subject>A1. Doping</subject><subject>A1. Surface processes</subject><subject>A3. Molecular beam epitaxy</subject><subject>B2. Semiconducting III–V materials</subject><subject>BERYLLIUM</subject><subject>BISMUTH</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>MATERIALS SCIENCE</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>MOLECULAR BEAM EPITAXY</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Other semiconductors</subject><subject>Physics</subject><subject>SOLAR ENERGY</subject><subject>Solar Energy - Photovoltaics</subject><subject>Specific materials</subject><subject>SURFACTANTS</subject><subject>Theory and models of film growth</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thermometry</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v3CAQxVGVSt2k_QoVOTQ3u4BZbG75o3YTKWov7RlhPCSsbNgAbutvX6xN1Nx6AaT5PebNPIQ-UlJTQsXnfb03cUkPMdSMkLYmvCa0eYM2tGubaksIO0GbcrKKMN69Q6cp7QkpSko2yF-7NM35Eac5Wm2y9hmDtWBywjZEvNNX6RvWfsA9xGUc3TzhIRycf8DBvqru9J1f38XFb4_7BU9hBDOPOhahnjAcXNZ_lvfordVjgg_P9xn6-fXLj5vb6v777u7m6r4yjZS5ooZZyRptuWa2Mw1ltBMMeNvyBgbZW8OZtZLaQUAjOSfW9LBtWSd4T6VlzRk6P_4bUnYqGZfBPJrgfRlMSboVYmUujswhhqcZUlaTSwbGUXsIc1JMtkJSKgsojqCJIaUIVh2im3RcFCVqjUDt1UsEao1AEa5KBEX46bmDTkaPNmpvXPqn7jomxXblLo8clJX8chBXx-ANDC6uhofg_tfqL3h0oGw</recordid><startdate>20070615</startdate><enddate>20070615</enddate><creator>Liu, Ting</creator><creator>Chandril, Sandeep</creator><creator>Ptak, A.J.</creator><creator>Korakakis, D.</creator><creator>Myers, T.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20070615</creationdate><title>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</title><author>Liu, Ting ; Chandril, Sandeep ; Ptak, A.J. ; Korakakis, D. ; Myers, T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A1. Doping</topic><topic>A1. Surface processes</topic><topic>A3. Molecular beam epitaxy</topic><topic>B2. Semiconducting III–V materials</topic><topic>BERYLLIUM</topic><topic>BISMUTH</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>MATERIALS SCIENCE</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>MOLECULAR BEAM EPITAXY</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Other semiconductors</topic><topic>Physics</topic><topic>SOLAR ENERGY</topic><topic>Solar Energy - Photovoltaics</topic><topic>Specific materials</topic><topic>SURFACTANTS</topic><topic>Theory and models of film growth</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thermometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Chandril, Sandeep</creatorcontrib><creatorcontrib>Ptak, A.J.</creatorcontrib><creatorcontrib>Korakakis, D.</creatorcontrib><creatorcontrib>Myers, T.H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting</au><au>Chandril, Sandeep</au><au>Ptak, A.J.</au><au>Korakakis, D.</au><au>Myers, T.H.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</atitle><jtitle>Journal of crystal growth</jtitle><date>2007-06-15</date><risdate>2007</risdate><volume>304</volume><issue>2</issue><spage>402</spage><epage>406</epage><pages>402-406</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Bi was investigated as a possible surfactant for growth of GaAs
1−
x
N
x
layers on (1
0
0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2007.04.013</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2007-06, Vol.304 (2), p.402-406 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_915662 |
source | Access via ScienceDirect (Elsevier) |
subjects | A1. Doping A1. Surface processes A3. Molecular beam epitaxy B2. Semiconducting III–V materials BERYLLIUM BISMUTH Cross-disciplinary physics: materials science rheology Exact sciences and technology Instruments, apparatus, components and techniques common to several branches of physics and astronomy MATERIALS SCIENCE Methods of deposition of films and coatings film growth and epitaxy MOLECULAR BEAM EPITAXY Molecular, atomic, ion, and chemical beam epitaxy Other semiconductors Physics SOLAR ENERGY Solar Energy - Photovoltaics Specific materials SURFACTANTS Theory and models of film growth Thermal instruments, apparatus and techniques Thermometry |
title | Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20surfactant%20effects%20for%20GaAsN%20and%20beryllium%20doping%20of%20GaAsN%20and%20GaInAsN%20grown%20by%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Liu,%20Ting&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2007-06-15&rft.volume=304&rft.issue=2&rft.spage=402&rft.epage=406&rft.pages=402-406&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2007.04.013&rft_dat=%3Cproquest_osti_%3E29769119%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29769119&rft_id=info:pmid/&rft_els_id=S0022024807003910&rfr_iscdi=true |