Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy

Bi was investigated as a possible surfactant for growth of GaAs 1− x N x layers on (1 0 0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2007-06, Vol.304 (2), p.402-406
Hauptverfasser: Liu, Ting, Chandril, Sandeep, Ptak, A.J., Korakakis, D., Myers, T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 2
container_start_page 402
container_title Journal of crystal growth
container_volume 304
creator Liu, Ting
Chandril, Sandeep
Ptak, A.J.
Korakakis, D.
Myers, T.H.
description Bi was investigated as a possible surfactant for growth of GaAs 1− x N x layers on (1 0 0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.
doi_str_mv 10.1016/j.jcrysgro.2007.04.013
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_915662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024807003910</els_id><sourcerecordid>29769119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</originalsourceid><addsrcrecordid>eNqFkU9v3CAQxVGVSt2k_QoVOTQ3u4BZbG75o3YTKWov7RlhPCSsbNgAbutvX6xN1Nx6AaT5PebNPIQ-UlJTQsXnfb03cUkPMdSMkLYmvCa0eYM2tGubaksIO0GbcrKKMN69Q6cp7QkpSko2yF-7NM35Eac5Wm2y9hmDtWBywjZEvNNX6RvWfsA9xGUc3TzhIRycf8DBvqru9J1f38XFb4_7BU9hBDOPOhahnjAcXNZ_lvfordVjgg_P9xn6-fXLj5vb6v777u7m6r4yjZS5ooZZyRptuWa2Mw1ltBMMeNvyBgbZW8OZtZLaQUAjOSfW9LBtWSd4T6VlzRk6P_4bUnYqGZfBPJrgfRlMSboVYmUujswhhqcZUlaTSwbGUXsIc1JMtkJSKgsojqCJIaUIVh2im3RcFCVqjUDt1UsEao1AEa5KBEX46bmDTkaPNmpvXPqn7jomxXblLo8clJX8chBXx-ANDC6uhofg_tfqL3h0oGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29769119</pqid></control><display><type>article</type><title>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Ting ; Chandril, Sandeep ; Ptak, A.J. ; Korakakis, D. ; Myers, T.H.</creator><creatorcontrib>Liu, Ting ; Chandril, Sandeep ; Ptak, A.J. ; Korakakis, D. ; Myers, T.H. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Bi was investigated as a possible surfactant for growth of GaAs 1− x N x layers on (1 0 0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2007.04.013</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Doping ; A1. Surface processes ; A3. Molecular beam epitaxy ; B2. Semiconducting III–V materials ; BERYLLIUM ; BISMUTH ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; MATERIALS SCIENCE ; Methods of deposition of films and coatings; film growth and epitaxy ; MOLECULAR BEAM EPITAXY ; Molecular, atomic, ion, and chemical beam epitaxy ; Other semiconductors ; Physics ; SOLAR ENERGY ; Solar Energy - Photovoltaics ; Specific materials ; SURFACTANTS ; Theory and models of film growth ; Thermal instruments, apparatus and techniques ; Thermometry</subject><ispartof>Journal of crystal growth, 2007-06, Vol.304 (2), p.402-406</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</citedby><cites>FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2007.04.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18829653$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/915662$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Chandril, Sandeep</creatorcontrib><creatorcontrib>Ptak, A.J.</creatorcontrib><creatorcontrib>Korakakis, D.</creatorcontrib><creatorcontrib>Myers, T.H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</title><title>Journal of crystal growth</title><description>Bi was investigated as a possible surfactant for growth of GaAs 1− x N x layers on (1 0 0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.</description><subject>A1. Doping</subject><subject>A1. Surface processes</subject><subject>A3. Molecular beam epitaxy</subject><subject>B2. Semiconducting III–V materials</subject><subject>BERYLLIUM</subject><subject>BISMUTH</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>MATERIALS SCIENCE</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>MOLECULAR BEAM EPITAXY</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Other semiconductors</subject><subject>Physics</subject><subject>SOLAR ENERGY</subject><subject>Solar Energy - Photovoltaics</subject><subject>Specific materials</subject><subject>SURFACTANTS</subject><subject>Theory and models of film growth</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thermometry</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v3CAQxVGVSt2k_QoVOTQ3u4BZbG75o3YTKWov7RlhPCSsbNgAbutvX6xN1Nx6AaT5PebNPIQ-UlJTQsXnfb03cUkPMdSMkLYmvCa0eYM2tGubaksIO0GbcrKKMN69Q6cp7QkpSko2yF-7NM35Eac5Wm2y9hmDtWBywjZEvNNX6RvWfsA9xGUc3TzhIRycf8DBvqru9J1f38XFb4_7BU9hBDOPOhahnjAcXNZ_lvfordVjgg_P9xn6-fXLj5vb6v777u7m6r4yjZS5ooZZyRptuWa2Mw1ltBMMeNvyBgbZW8OZtZLaQUAjOSfW9LBtWSd4T6VlzRk6P_4bUnYqGZfBPJrgfRlMSboVYmUujswhhqcZUlaTSwbGUXsIc1JMtkJSKgsojqCJIaUIVh2im3RcFCVqjUDt1UsEao1AEa5KBEX46bmDTkaPNmpvXPqn7jomxXblLo8clJX8chBXx-ANDC6uhofg_tfqL3h0oGw</recordid><startdate>20070615</startdate><enddate>20070615</enddate><creator>Liu, Ting</creator><creator>Chandril, Sandeep</creator><creator>Ptak, A.J.</creator><creator>Korakakis, D.</creator><creator>Myers, T.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20070615</creationdate><title>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</title><author>Liu, Ting ; Chandril, Sandeep ; Ptak, A.J. ; Korakakis, D. ; Myers, T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1c2f923af4a2f8c3121862e47743ed9bfc42ff91fd6e39440fcbe572864b19f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>A1. Doping</topic><topic>A1. Surface processes</topic><topic>A3. Molecular beam epitaxy</topic><topic>B2. Semiconducting III–V materials</topic><topic>BERYLLIUM</topic><topic>BISMUTH</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>MATERIALS SCIENCE</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>MOLECULAR BEAM EPITAXY</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Other semiconductors</topic><topic>Physics</topic><topic>SOLAR ENERGY</topic><topic>Solar Energy - Photovoltaics</topic><topic>Specific materials</topic><topic>SURFACTANTS</topic><topic>Theory and models of film growth</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thermometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Chandril, Sandeep</creatorcontrib><creatorcontrib>Ptak, A.J.</creatorcontrib><creatorcontrib>Korakakis, D.</creatorcontrib><creatorcontrib>Myers, T.H.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting</au><au>Chandril, Sandeep</au><au>Ptak, A.J.</au><au>Korakakis, D.</au><au>Myers, T.H.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy</atitle><jtitle>Journal of crystal growth</jtitle><date>2007-06-15</date><risdate>2007</risdate><volume>304</volume><issue>2</issue><spage>402</spage><epage>406</epage><pages>402-406</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Bi was investigated as a possible surfactant for growth of GaAs 1− x N x layers on (1 0 0) GaAs substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source. Importantly, Bi extends the useable growth conditions producing smoother surfaces to a significantly higher group V fractional N content than without Bi, enhancing possibilities for growth of structures requiring a larger nitrogen content. The conductivity of Be-doped GaAsN and GaInAsN decreased significantly with increasing N concentration. Temperature-dependent Hall measurement suggests possible compensation and increased activation energy. SIMS and Raman measurements indicate that the N composition increased with introducing Be, and for low [N], with the presence of Bi. The addition of Bi during growth of Be-doped GaAsN only produced semi-insulating layers at all concentrations investigated suggesting it enhances the formation of compensating defects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2007.04.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2007-06, Vol.304 (2), p.402-406
issn 0022-0248
1873-5002
language eng
recordid cdi_osti_scitechconnect_915662
source Access via ScienceDirect (Elsevier)
subjects A1. Doping
A1. Surface processes
A3. Molecular beam epitaxy
B2. Semiconducting III–V materials
BERYLLIUM
BISMUTH
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
MATERIALS SCIENCE
Methods of deposition of films and coatings
film growth and epitaxy
MOLECULAR BEAM EPITAXY
Molecular, atomic, ion, and chemical beam epitaxy
Other semiconductors
Physics
SOLAR ENERGY
Solar Energy - Photovoltaics
Specific materials
SURFACTANTS
Theory and models of film growth
Thermal instruments, apparatus and techniques
Thermometry
title Bismuth surfactant effects for GaAsN and beryllium doping of GaAsN and GaInAsN grown by molecular beam epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20surfactant%20effects%20for%20GaAsN%20and%20beryllium%20doping%20of%20GaAsN%20and%20GaInAsN%20grown%20by%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Liu,%20Ting&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2007-06-15&rft.volume=304&rft.issue=2&rft.spage=402&rft.epage=406&rft.pages=402-406&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2007.04.013&rft_dat=%3Cproquest_osti_%3E29769119%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29769119&rft_id=info:pmid/&rft_els_id=S0022024807003910&rfr_iscdi=true