Genetics of cattails in radioactively contaminated areas around Chornobyl
Research on populations from radioactively contaminated areas around Chornobyl has produced ambiguous results for the presence of radiation effects. More studies are needed to provide information on whether radiation exposure at Chornobyl significantly affected genetic diversity in natural populatio...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2006-08, Vol.15 (9), p.2611-2625 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research on populations from radioactively contaminated areas around Chornobyl has produced ambiguous results for the presence of radiation effects. More studies are needed to provide information on whether radiation exposure at Chornobyl significantly affected genetic diversity in natural populations of various taxa. Eleven and nine variable microsatellite loci were used to test for differences in genetic diversity between reference and Chornobyl populations of two cattail species (Typha angustifolia and Typha latifolia, respectively) from Ukraine. Our purpose was to determine whether radiation had a significant impact on genetic diversities of the Chornobyl Typha populations, or if their genetic composition might be better explained by species demography and/or changes in population dynamics, mainly in sexual and asexual reproduction. Populations closest to the reactor had increased genetic diversities and high number of genets, which likely were due to factors other than radiation including increased gene flow among Chornobyl populations, enhanced sexual reproduction within populations, and/or origin of the genets from seed bank. Both Typha species also demonstrated small but significant effects associated with latitude, geographical regions, and watersheds. Typha's demography in Ukraine possibly varies with these three factors, and the small difference between Chornobyl and reference populations of T. latifolia detected after partitioning the total genetic variance between them is probably due primarily to these factors. However, the positive correlations of several genetic characteristics with radionuclide concentrations suggest that radiation may have also affected genetics of Chornobyl Typha populations but much less than was expected considering massive contamination of the Chornobyl area. |
---|---|
ISSN: | 0962-1083 1365-294X |
DOI: | 10.1111/j.1365-294X.2006.02939.x |