The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz

Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO 2(CO 3) 3 2− and Ca 2UO 2(CO 3) 3 0(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2006-03, Vol.70 (6), p.1379-1387
Hauptverfasser: Fox, Patricia M., Davis, James A., Zachara, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO 2(CO 3) 3 2− and Ca 2UO 2(CO 3) 3 0(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO 3 solutions equilibrated with either ambient air (430 ppm CO 2) or 2% CO 2 in the presence of 0, 1.8, or 8.9 mM Ca 2+. Under conditions where the Ca 2UO 2(CO 3) 3 0(aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca 2UO 2(CO 3) 3 0(aq) accurately simulated the effect of Ca 2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca 2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2005.11.027