Systematic investigation of three-nucleon force effects in elastic scattering of polarized protons from deuterons at intermediate energies
The question, whether the high-quality nucleon-nucleon potentials can successfully describe the three-nucleon system, and to what extent three-nucleon forces (3NFs) play a role, has become very important in nuclear few-body physics. One kinematic region where effects because of 3NFs show up is in th...
Gespeichert in:
Veröffentlicht in: | Physical review. C, Nuclear physics Nuclear physics, 2005-06, Vol.71 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The question, whether the high-quality nucleon-nucleon potentials can successfully describe the three-nucleon system, and to what extent three-nucleon forces (3NFs) play a role, has become very important in nuclear few-body physics. One kinematic region where effects because of 3NFs show up is in the minimum of the differential cross section of elastic nucleon-deuteron scattering. Another observable, which could give an indication about the contribution of the spin to 3NFs, is the vector analyzing power. To investigate the importance of 3NFs systematically over a broad range of intermediate energies, both observables of elastic proton-deuteron scattering have been measured at proton bombarding energies of 108, 120, 135, 150, 170, and 190 MeV, covering an angular range in the center-of-mass system between 30{sup o} and 170{sup o}. The results show unambiguously the shortcomings of calculations employing only two-body forces and the necessity of the inclusion of 3NFs. They also show the limitations of the results of the present day models for few-nucleon systems at backward angles, especially at higher beam energies. New calculations based on chiral perturbation theory are also presented and compared with the data at the lowest energy. |
---|---|
ISSN: | 0556-2813 1089-490X |
DOI: | 10.1103/PhysRevC.71.064004 |