Förster energy transfer in combinatorial arrays of selective doped organic light-emitting devices
Energy transfer in highly-efficient doped organic light-emitting devices (OLEDs) is described and discussed. The OLEDs include a hole transport layer (HTL) and an electron transport layer composed of an efficient blue emitter. A region of the HTL adjacent to the host blue-emitting layer was doped wi...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2004-02, Vol.84 (7), p.1201-1203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Energy transfer in highly-efficient doped organic light-emitting devices (OLEDs) is described and discussed. The OLEDs include a hole transport layer (HTL) and an electron transport layer composed of an efficient blue emitter. A region of the HTL adjacent to the host blue-emitting layer was doped with an efficient guest red dye. The blue emitter-to-red dye energy transfer probability PHGη was determined by comparing the emission from the two fluorophores and its dependence on the applied field. PHGη decreases with increasing field, probably due to an increasing fraction of dye molecules which are positively charged, i.e., which trap a hole. It is also estimated that at fields as low as 0.4 MV/cm, ∼50% of the dye emission is due to trap emission rather than Förster energy transfer. The analysis yields a Förster energy transfer radius R0=33.5±3.5 Å. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1648138 |