Simulation of water transport through a lipid membrane

To obtain insight in the process of water permeation through a lipid membrane we performed molecular dynamics simulations on a phospholipid (DPPC)/water system with atomic detail. Since the actual process of permeation is too slow to be studied directly, we deduced the permeation rate indirectly via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry (1952) 1994-04, Vol.98 (15), p.4155-4168
Hauptverfasser: Marrink, Siewert-Jan, Berendsen, Herman J. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To obtain insight in the process of water permeation through a lipid membrane we performed molecular dynamics simulations on a phospholipid (DPPC)/water system with atomic detail. Since the actual process of permeation is too slow to be studied directly, we deduced the permeation rate indirectly via computation of the free energy and diffusion rate profiles of a water molecule across the bilayer. We concluded that the permeation of water through a lipid membrane cannot be described adequately by a simple homogeneous solubility-diffusion model. Both the excess free energy and the diffusion rate strongly depend on the position in the membrane, as a result from the inhomogeneous nature of the membrane. The calculated excess free energy profile has a shallow slope and a maximum height of 26 kJ/mol. The diffusion rate is highest in the middle of the membrane where the lipid density is low. In the interfacial region almost all water molecules are bound by the lipid headgroups, and the diffusion turns out to be 1 order of magnitude smaller. The total transport process is essentially determined by the free energy barrier. 78 refs., 12 figs.
ISSN:0022-3654
1541-5740
DOI:10.1021/j100066a040