Width distribution for random-walk interfaces

Roughening of a one-dimensional interface is studied under the assumption that the interface configurations are continuous, periodic random walks. The distribution of the square of the width of interface, [ital w][sup 2], is found to scale as [ital P]([ital w][sup 2])=[l angle][ital w][sup 2][r angl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994-08, Vol.50 (2), p.R639-R642
Hauptverfasser: Foltin, G, Oerding, K, Rácz, Z, Workman, RL, Zia, RK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Roughening of a one-dimensional interface is studied under the assumption that the interface configurations are continuous, periodic random walks. The distribution of the square of the width of interface, [ital w][sup 2], is found to scale as [ital P]([ital w][sup 2])=[l angle][ital w][sup 2][r angle][sup [minus]1][Phi]([ital w][sup 2]/[l angle][ital w][sup 2][r angle]) where [l angle][ital w][sup 2][r angle] is the average of [ital w][sup 2]. We calculate the scaling function [Phi]([ital x]) exactly and compare it both to exact enumerations for a discrete-slope surface evolution model and to [Phi]'s obtained in Monte Carlo simulations of equilibrium and driven interfaces of chemically reacting systems.
ISSN:1063-651X
1095-3787
DOI:10.1103/physreve.50.r639