Width distribution for random-walk interfaces
Roughening of a one-dimensional interface is studied under the assumption that the interface configurations are continuous, periodic random walks. The distribution of the square of the width of interface, [ital w][sup 2], is found to scale as [ital P]([ital w][sup 2])=[l angle][ital w][sup 2][r angl...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994-08, Vol.50 (2), p.R639-R642 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Roughening of a one-dimensional interface is studied under the assumption that the interface configurations are continuous, periodic random walks. The distribution of the square of the width of interface, [ital w][sup 2], is found to scale as [ital P]([ital w][sup 2])=[l angle][ital w][sup 2][r angle][sup [minus]1][Phi]([ital w][sup 2]/[l angle][ital w][sup 2][r angle]) where [l angle][ital w][sup 2][r angle] is the average of [ital w][sup 2]. We calculate the scaling function [Phi]([ital x]) exactly and compare it both to exact enumerations for a discrete-slope surface evolution model and to [Phi]'s obtained in Monte Carlo simulations of equilibrium and driven interfaces of chemically reacting systems. |
---|---|
ISSN: | 1063-651X 1095-3787 |
DOI: | 10.1103/physreve.50.r639 |