Bicritical point and crossover in a two-temperature, diffusive kinetic Ising model

The phase diagram of a two-temperature kinetic Ising model which evolves by Kawasaki dynamics is studied using Monte Carlo simulations in dimension [ital d]=2 and solving mean-spherical approximation in general [ital d]. We show that the equal-temperature (equilibrium) Ising critical point is a bicr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 1994-09, Vol.73 (10), p.1320-1323
Hauptverfasser: Bassler, KE, Rácz, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase diagram of a two-temperature kinetic Ising model which evolves by Kawasaki dynamics is studied using Monte Carlo simulations in dimension [ital d]=2 and solving mean-spherical approximation in general [ital d]. We show that the equal-temperature (equilibrium) Ising critical point is a bicritical point where two nonequilibrium critical lines meet a first-order line separating two distinct ordered phases. The shape of the nonequilibrium critical lines is described by a crossover exponent, [ital cphi], which we find to be equal to the susceptibility exponent, [gamma], of the Ising model.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.73.1320