Bicritical point and crossover in a two-temperature, diffusive kinetic Ising model
The phase diagram of a two-temperature kinetic Ising model which evolves by Kawasaki dynamics is studied using Monte Carlo simulations in dimension [ital d]=2 and solving mean-spherical approximation in general [ital d]. We show that the equal-temperature (equilibrium) Ising critical point is a bicr...
Gespeichert in:
Veröffentlicht in: | Physical review letters 1994-09, Vol.73 (10), p.1320-1323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase diagram of a two-temperature kinetic Ising model which evolves by Kawasaki dynamics is studied using Monte Carlo simulations in dimension [ital d]=2 and solving mean-spherical approximation in general [ital d]. We show that the equal-temperature (equilibrium) Ising critical point is a bicritical point where two nonequilibrium critical lines meet a first-order line separating two distinct ordered phases. The shape of the nonequilibrium critical lines is described by a crossover exponent, [ital cphi], which we find to be equal to the susceptibility exponent, [gamma], of the Ising model. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.73.1320 |