The nature of groundwater flow in fractured rock: Evidence from the isotopic and chemical evolution of recrystallized fracture calcites from the Canadian Precambrian Shield
The isotope geochemistry of fracture calcites in three Precambrian plutons on the Canadian Shield has been investigated in order to understand the paleohydrogeological conditions in fractured crystalline rock. Fracture calcites of ancient hydrothermal origins in the Chalk River and East Bull Lake pl...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 1992, Vol.56 (1), p.369-388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The isotope geochemistry of fracture calcites in three Precambrian plutons on the Canadian Shield has been investigated in order to understand the paleohydrogeological conditions in fractured crystalline rock. Fracture calcites of ancient hydrothermal origins in the Chalk River and East Bull Lake plutons exhibit
18O enrichment and
13C depletion trends resulting from recent low-temperature calcite recrystallization under open-system conditions for oxygen, but semiclosed for carbon, and under extremely variable time-integrated, water/rock (calcite) ratios. This process causes recycling of elements with calcite distribution coefficients > 1 (rare earths, manganese, and possibly iron) from the precursor calcite to younger calcites as well as calcite control over the
87Sr
86Sr
ratio of the groundwater within the Chalk River pluton. The large but variable water/rock (calcite) mole ratios calculated from the shifts in the stable isotopic compositions of fracture calcites are compatible with fracture flow models that invoke flow channeling within single fractures that also contain regions of immobile porosity.
Quantification of isotopic shifts resulting from recrystallization requires that the initial isotopic composition of the precursor hydrothermal calcite be well constrained. Unlike the Chalk River and East Bull Lake plutons, hydrothermal fracture calcites in the White Lake pluton, which intrudes marble-rich country rocks of the Grenville Supergroup, have highly variable δ
13C and δ
18O values. This is attributed to mixing of carbon from magmatic and sedimentary reservoirs, and to oxygen isotopic exchange between hydrothermal fluids and carbonate country rocks at the time of intrusion. Convective circulation of meteoric groundwater from the surrounding
13C-rich carbonate rocks (up to 6.6%.) resulted in δ
13C values as heavy as 3.0%. for the fracture calcites in the pluton. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/0016-7037(92)90139-A |