Solubilization of a Homopolymer in a Block Copolymer

Blends containing styrene-butadiene diblock copolymer (50 wt % styrene content) and polystyrene of various molecular weights are studied by light scattering, transmission electron microscopy, and small-angle X-ray scattering. The solubility of polystyrene in the styrene domain of the block copolymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 1994-04, Vol.27 (9), p.2439-2447
Hauptverfasser: Jeon, Kyung-Jin, Roe, Ryong-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blends containing styrene-butadiene diblock copolymer (50 wt % styrene content) and polystyrene of various molecular weights are studied by light scattering, transmission electron microscopy, and small-angle X-ray scattering. The solubility of polystyrene in the styrene domain of the block copolymer is governed by the ratio of the homopolymer molecular weight to the block molecular weight. A finite solubility limit exists when this ratio exceeds [approximately]1. The lamellar repeat period increases linearly as more polystyrene is added, but the butadiene layer thickness remains constant, signifying that the average interfacial area occupied by a copolymer junction point does not change with added polystyrene. This contrasts to the case found by the others that the average area per junction point increases when the added homopolymer is smaller than the block size. Small-angle X-ray scattering patterns obtained from samples having lamellar morphology are described by an idealized model in which layers of styrene and butadiene of randomly varying thicknesses with a diffuse interface between them are stacked parallel.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma00087a012