Acceptance rates in multigrid Monte Carlo simulations
An approximation formula is derived for acceptance rates of nonlocal Metropolis updates in simulations of lattice field theories. The predictions of the formula agree quite well with Monte Carlo simulations of two-dimensional sine-Gordon, {ital XY}, and {phi}{sup 4} models. The results are consisten...
Gespeichert in:
Veröffentlicht in: | Physical review. D, Particles and fields Particles and fields, 1992-06, Vol.45 (12), p.R4372-R4375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An approximation formula is derived for acceptance rates of nonlocal Metropolis updates in simulations of lattice field theories. The predictions of the formula agree quite well with Monte Carlo simulations of two-dimensional sine-Gordon, {ital XY}, and {phi}{sup 4} models. The results are consistent with the following rule: For a critical model with a fundamental Hamiltonian {ital scrH}({phi}) sufficiently high acceptance rates for a complete elimination of critical slowing down can only be expected if the expansion of {l angle}{ital scrH}({phi}+{psi}){r angle} in terms of the shift {psi} contains no relevant term (mass term). |
---|---|
ISSN: | 0556-2821 1089-4918 |
DOI: | 10.1103/PhysRevD.45.R4372 |