Acceptance rates in multigrid Monte Carlo simulations

An approximation formula is derived for acceptance rates of nonlocal Metropolis updates in simulations of lattice field theories. The predictions of the formula agree quite well with Monte Carlo simulations of two-dimensional sine-Gordon, {ital XY}, and {phi}{sup 4} models. The results are consisten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 1992-06, Vol.45 (12), p.R4372-R4375
Hauptverfasser: GRABENSTEIN, M, PINN, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An approximation formula is derived for acceptance rates of nonlocal Metropolis updates in simulations of lattice field theories. The predictions of the formula agree quite well with Monte Carlo simulations of two-dimensional sine-Gordon, {ital XY}, and {phi}{sup 4} models. The results are consistent with the following rule: For a critical model with a fundamental Hamiltonian {ital scrH}({phi}) sufficiently high acceptance rates for a complete elimination of critical slowing down can only be expected if the expansion of {l angle}{ital scrH}({phi}+{psi}){r angle} in terms of the shift {psi} contains no relevant term (mass term).
ISSN:0556-2821
1089-4918
DOI:10.1103/PhysRevD.45.R4372