Krylov Methods for the Incompressible Navier-Stokes Equations

Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1994, Vol.110 (1), p.82-102
Hauptverfasser: Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 82
container_title Journal of computational physics
container_volume 110
creator Edwards, W.S.
Tuckerman, L.S.
Friesner, R.A.
Sorensen, D.C.
description Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand side and of its Jacobian, without inversion of the viscous operator. Time evolution is performed by a nonlinear extension of the method of exponential propagation. Steady states are calculated by inexact Krylov-Newton iteration using ORTHORES and GMRES. Linear stability analysis is carried out using an implicitly restarted Arnoldi process with implicit polynomial filters. A detailed implementation is described for a pseudospectral calculation of the stability of Taylor vortices with respect to wavy vortices in the Couette-Taylor problem.
doi_str_mv 10.1006/jcph.1994.1007
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7106845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999184710072</els_id><sourcerecordid>S0021999184710072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ec7520d59c88806b2ba4476d45b500c69ed5e808426d20e55695b99e4a38a3773</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwMkeINeWc2I49MKCqQEWBAZgjx7koLmlc7FCp_55aQWxMpyd9997dI-SSwowCiJu12bYzqhSLsjgiEwoK0qyg4phMADKaKqXoKTkLYQ0AkjM5IbdPft-5XfKMQ-vqkDTOJ0OLybI3brP1GIKtOkxe9M6iT98G94khWXx968G6PpyTk0Z3AS9-55R83C_e54_p6vVhOb9bpYYxOaRoCp5BzZWRUoKoskozVoia8YoDGKGw5ihBskzUGSDnQvFKKWQ6lzovinxKrkZfFwZbBmMHNK1xfY9mKAsKQjJ-gGYjZLwLwWNTbr3daL8vKZSxoTI2VMaGooyu1-PCVgeju8br3tjwt8UoUMryAyZHDA8fxhriAdgbrK2P-bWz_yX8AHTgeDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Krylov Methods for the Incompressible Navier-Stokes Equations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Edwards, W.S. ; Tuckerman, L.S. ; Friesner, R.A. ; Sorensen, D.C.</creator><creatorcontrib>Edwards, W.S. ; Tuckerman, L.S. ; Friesner, R.A. ; Sorensen, D.C.</creatorcontrib><description>Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand side and of its Jacobian, without inversion of the viscous operator. Time evolution is performed by a nonlinear extension of the method of exponential propagation. Steady states are calculated by inexact Krylov-Newton iteration using ORTHORES and GMRES. Linear stability analysis is carried out using an implicitly restarted Arnoldi process with implicit polynomial filters. A detailed implementation is described for a pseudospectral calculation of the stability of Taylor vortices with respect to wavy vortices in the Couette-Taylor problem.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1994.1007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>990200 -- Mathematics &amp; Computers ; Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Computational methods in fluid dynamics ; COMPUTERIZED SIMULATION ; DIFFERENTIAL EQUATIONS ; ENGINEERING ; EQUATIONS ; Exact sciences and technology ; FLUID FLOW ; Fluid mechanics: general mathematical aspects ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; INCOMPRESSIBLE FLOW ; NAVIER-STOKES EQUATIONS ; NUMERICAL SOLUTION ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; SIMULATION 420400 -- Engineering-- Heat Transfer &amp; Fluid Flow</subject><ispartof>Journal of computational physics, 1994, Vol.110 (1), p.82-102</ispartof><rights>1994 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ec7520d59c88806b2ba4476d45b500c69ed5e808426d20e55695b99e4a38a3773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999184710072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4101143$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7106845$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, W.S.</creatorcontrib><creatorcontrib>Tuckerman, L.S.</creatorcontrib><creatorcontrib>Friesner, R.A.</creatorcontrib><creatorcontrib>Sorensen, D.C.</creatorcontrib><title>Krylov Methods for the Incompressible Navier-Stokes Equations</title><title>Journal of computational physics</title><description>Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand side and of its Jacobian, without inversion of the viscous operator. Time evolution is performed by a nonlinear extension of the method of exponential propagation. Steady states are calculated by inexact Krylov-Newton iteration using ORTHORES and GMRES. Linear stability analysis is carried out using an implicitly restarted Arnoldi process with implicit polynomial filters. A detailed implementation is described for a pseudospectral calculation of the stability of Taylor vortices with respect to wavy vortices in the Couette-Taylor problem.</description><subject>990200 -- Mathematics &amp; Computers</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Computational methods in fluid dynamics</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ENGINEERING</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>Fluid mechanics: general mathematical aspects</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>SIMULATION 420400 -- Engineering-- Heat Transfer &amp; Fluid Flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwMkeINeWc2I49MKCqQEWBAZgjx7koLmlc7FCp_55aQWxMpyd9997dI-SSwowCiJu12bYzqhSLsjgiEwoK0qyg4phMADKaKqXoKTkLYQ0AkjM5IbdPft-5XfKMQ-vqkDTOJ0OLybI3brP1GIKtOkxe9M6iT98G94khWXx968G6PpyTk0Z3AS9-55R83C_e54_p6vVhOb9bpYYxOaRoCp5BzZWRUoKoskozVoia8YoDGKGw5ihBskzUGSDnQvFKKWQ6lzovinxKrkZfFwZbBmMHNK1xfY9mKAsKQjJ-gGYjZLwLwWNTbr3daL8vKZSxoTI2VMaGooyu1-PCVgeju8br3tjwt8UoUMryAyZHDA8fxhriAdgbrK2P-bWz_yX8AHTgeDQ</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Edwards, W.S.</creator><creator>Tuckerman, L.S.</creator><creator>Friesner, R.A.</creator><creator>Sorensen, D.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>1994</creationdate><title>Krylov Methods for the Incompressible Navier-Stokes Equations</title><author>Edwards, W.S. ; Tuckerman, L.S. ; Friesner, R.A. ; Sorensen, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ec7520d59c88806b2ba4476d45b500c69ed5e808426d20e55695b99e4a38a3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>990200 -- Mathematics &amp; Computers</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Computational methods in fluid dynamics</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ENGINEERING</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>Fluid mechanics: general mathematical aspects</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>SIMULATION 420400 -- Engineering-- Heat Transfer &amp; Fluid Flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, W.S.</creatorcontrib><creatorcontrib>Tuckerman, L.S.</creatorcontrib><creatorcontrib>Friesner, R.A.</creatorcontrib><creatorcontrib>Sorensen, D.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, W.S.</au><au>Tuckerman, L.S.</au><au>Friesner, R.A.</au><au>Sorensen, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krylov Methods for the Incompressible Navier-Stokes Equations</atitle><jtitle>Journal of computational physics</jtitle><date>1994</date><risdate>1994</risdate><volume>110</volume><issue>1</issue><spage>82</spage><epage>102</epage><pages>82-102</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand side and of its Jacobian, without inversion of the viscous operator. Time evolution is performed by a nonlinear extension of the method of exponential propagation. Steady states are calculated by inexact Krylov-Newton iteration using ORTHORES and GMRES. Linear stability analysis is carried out using an implicitly restarted Arnoldi process with implicit polynomial filters. A detailed implementation is described for a pseudospectral calculation of the stability of Taylor vortices with respect to wavy vortices in the Couette-Taylor problem.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/jcph.1994.1007</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1994, Vol.110 (1), p.82-102
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_7106845
source Elsevier ScienceDirect Journals Complete
subjects 990200 -- Mathematics & Computers
Classical and quantum physics: mechanics and fields
Classical mechanics of continuous media: general mathematical aspects
Computational methods in fluid dynamics
COMPUTERIZED SIMULATION
DIFFERENTIAL EQUATIONS
ENGINEERING
EQUATIONS
Exact sciences and technology
FLUID FLOW
Fluid mechanics: general mathematical aspects
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
INCOMPRESSIBLE FLOW
NAVIER-STOKES EQUATIONS
NUMERICAL SOLUTION
PARTIAL DIFFERENTIAL EQUATIONS
Physics
SIMULATION 420400 -- Engineering-- Heat Transfer & Fluid Flow
title Krylov Methods for the Incompressible Navier-Stokes Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krylov%20Methods%20for%20the%20Incompressible%20Navier-Stokes%20Equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Edwards,%20W.S.&rft.date=1994&rft.volume=110&rft.issue=1&rft.spage=82&rft.epage=102&rft.pages=82-102&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1994.1007&rft_dat=%3Celsevier_osti_%3ES0021999184710072%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021999184710072&rfr_iscdi=true