Krylov Methods for the Incompressible Navier-Stokes Equations

Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1994, Vol.110 (1), p.82-102
Hauptverfasser: Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods are presented for time evolution, steady-state solving and linear stability analysis for the incompressible Navier-Stokes equations at low to moderate Reynolds numbers. The methods use Krylov subspaces constructed by the Arnoldi process from actions of the explicit Navier-Stokes right-hand side and of its Jacobian, without inversion of the viscous operator. Time evolution is performed by a nonlinear extension of the method of exponential propagation. Steady states are calculated by inexact Krylov-Newton iteration using ORTHORES and GMRES. Linear stability analysis is carried out using an implicitly restarted Arnoldi process with implicit polynomial filters. A detailed implementation is described for a pseudospectral calculation of the stability of Taylor vortices with respect to wavy vortices in the Couette-Taylor problem.
ISSN:0021-9991
1090-2716
DOI:10.1006/jcph.1994.1007