A Variant of Van Leer's Method for Multidimensional Systems of Conservation Laws

We present a new variant of Van Leer's construction of upwind finite volume schemes for hyperbolic systems of conservation laws. Fluxes are computed with second-order accuracy using an interpolation rather than a slope reconstruction. A correction of the interpolated values is necessary and per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1994-06, Vol.112 (2), p.370-381
Hauptverfasser: Perthame, Benoı̂t, Qiu, Youchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new variant of Van Leer's construction of upwind finite volume schemes for hyperbolic systems of conservation laws. Fluxes are computed with second-order accuracy using an interpolation rather than a slope reconstruction. A correction of the interpolated values is necessary and performed globally on each cell by a conservation argument. It can be used on a rectangular or triangles based dual grid to obtain a genuinely multidimensional scheme. One of our main concerns in this construction, is to prove that the second-order reconstruction, combined with a Boltzmann solver, gives nonnegative values of the pressure and density for gas dynamics, even on an unstructured mesh. This allows us to derive a rigorous CFL condition. Thus our approach is very robust.
ISSN:0021-9991
1090-2716
DOI:10.1006/jcph.1994.1107