Conformal field theory and hyperbolic geometry
We examine the correspondence betweeen the conformal field theory of boundary operators and two-dimensional hyperbolic geometry. Considering domain boundaries in critical systems and the invariance of the hyperbolic length allows a new interpretation of the basic equation of conformal covariance. Th...
Gespeichert in:
Veröffentlicht in: | Physical review letters 1994-06, Vol.72 (25), p.3929-3932 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine the correspondence betweeen the conformal field theory of boundary operators and two-dimensional hyperbolic geometry. Considering domain boundaries in critical systems and the invariance of the hyperbolic length allows a new interpretation of the basic equation of conformal covariance. The scale factors gain a physical interpretation. We exhibit a fully factored form for the three-point function. An infinite series of minimal models with limit point [ital c]=[minus]2 is discovered. A correspondence between the anomalous dimension and the angle of certain hyperbolic figures emerges. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.72.3929 |