Conformal field theory and hyperbolic geometry

We examine the correspondence betweeen the conformal field theory of boundary operators and two-dimensional hyperbolic geometry. Considering domain boundaries in critical systems and the invariance of the hyperbolic length allows a new interpretation of the basic equation of conformal covariance. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 1994-06, Vol.72 (25), p.3929-3932
Hauptverfasser: Kleban, P, Vassileva, I, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the correspondence betweeen the conformal field theory of boundary operators and two-dimensional hyperbolic geometry. Considering domain boundaries in critical systems and the invariance of the hyperbolic length allows a new interpretation of the basic equation of conformal covariance. The scale factors gain a physical interpretation. We exhibit a fully factored form for the three-point function. An infinite series of minimal models with limit point [ital c]=[minus]2 is discovered. A correspondence between the anomalous dimension and the angle of certain hyperbolic figures emerges.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.72.3929