Structure and organization of the human alpha class glutathione S-transferase genes and related pseudogenes

We have isolated and characterized genomic DNA encoding several human Alpha class glutathione S-transferase genes and pseudogenes. All the genes are composed of seven exons with boundaries identical to those of the Alpha class genes in rats. The GSTA1 gene is approximately 12 kb in length and is clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 1993-12, Vol.18 (3), p.680-686
Hauptverfasser: SUZUKI, T, JOHNSTON, P. N, BOARD, P. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have isolated and characterized genomic DNA encoding several human Alpha class glutathione S-transferase genes and pseudogenes. All the genes are composed of seven exons with boundaries identical to those of the Alpha class genes in rats. The GSTA1 gene is approximately 12 kb in length and is closely flanked by other Alpha class gene sequences. The complete sequence of the 1.7-kb intergenic region between exon 7 of an upstream pseudogene and exon 1 of the GSTA1 gene has been determined. An additional gene that encodes an uncharacterized Alpha class glutathione S-transferase has been identified. The protein derived from this gene would have 19 amino acid substitutions compared with the GSTA1 isoenzyme. Several pseudogenes with single-base and/or complete exon deletions have been identified, but no reverse-transcribed pseudogenes have been detected. The occurrence of multiple genes and pseudogenes on a single fragment of cloned genomic DNA and the prior identification of a single chromosomal region (6p12) of hybridization (Board and Webb, 1987, Proc. Natl. Acad. Sci. USA 84:2377-2381) suggest that all the Alpha class genes are members of a closely linked gene family that has evolved by duplication and gene conversion events.
ISSN:0888-7543
1089-8646
DOI:10.1016/S0888-7543(05)80373-8