Conformational characterization of a single-site mutant of murine epidermal growth factor (EGF) by sup 1 H NMR provides evidence that leucine-47 is involved in the interactions with the EGF receptor

Epidermal growth factor (EGF) is a small protein containing 53 amino acids and three disulfide bonds. There is significant current interest in structure-function relationships in EGF and EGF-like proteins, including the homologous type-{alpha} transforming growth factors. The Leu-47 residue of murin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86:24
Hauptverfasser: Moy, F.J., Scheraga, H.A., Liu, J.F., Wu, R., Montelione, G.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epidermal growth factor (EGF) is a small protein containing 53 amino acids and three disulfide bonds. There is significant current interest in structure-function relationships in EGF and EGF-like proteins, including the homologous type-{alpha} transforming growth factors. The Leu-47 residue of murine EGF (mEGF) is one of several that are strongly conserved among the EGF-like growth factors, suggesting that it may contribute to the active site of mEGF. In several different binding assays, the activity of the mutant analog in which Leu-47 is replaced by Ser ((Ser{sup 47})mEGF) ranges from 8 to 18 times weaker than that of wild-type mEGF. The NMR data summarized in this paper demonstrate that the significant differences in the binding activities of wild-type and (Ser{sup 47})mEGF cannot be attributed to structural changes remote from the three-dimensional site of mutation. The only minor conformational changes that are indicated by these data involve side chains of residues proximal to Leu-47 in the three-dimensional structure. Therefore, Leu-47 and/or residues spatially adjacent to Leu-47 constitute part of the active site of mEGF.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.86.24.9836