Parallel, adaptive finite element methods for conservation laws

We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 1994, Vol.14 (1), p.255-283
Hauptverfasser: Biswas, Rupak, Devine, Karen D., Flaherty, Joseph E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial are obtained by a p-refinement technique using superconvergence at Radau points. The resulting methods is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational costof the method.
ISSN:0168-9274
1873-5460
DOI:10.1016/0168-9274(94)90029-9