Investigations about triggering of coaxial multichannel pseudospark switches
A fundamental problem of pseudospark switches is erosion in the borehole area. One way to reduce erosion is to distribute the current to several discharge channels. Essential for multichannel operation is a reliable ignition of all these channels. The aim of this work was to find out the requirement...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 1994-02, Vol.22 (1), p.78-82 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fundamental problem of pseudospark switches is erosion in the borehole area. One way to reduce erosion is to distribute the current to several discharge channels. Essential for multichannel operation is a reliable ignition of all these channels. The aim of this work was to find out the requirements for a trigger for multichannel pseudospark switches and to develop a suitable trigger device. The investigations were made with a three channel pseudospark switch. The developed trigger is a pulsed hollow cathode discharge with a 3 mA dc-preionization. A trigger voltage of 4 kV results in a current of about 6 A in the hollow cathode of the trigger-section. This hollow cathode discharge causes a trigger current into the hollow cathodes of the pseudospark chambers. The trigger current which is necessary to ignite an equally distributed discharge has to be at least 3 mA into each main switch hollow cathode. A jitter of 2 ns was achieved for the coaxial multichannel pseudospark switch.< > |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/27.281555 |