Mechanisms of Recirculating Liquid Flow on Distillation Sieve Plates

This paper describes an experimental investigation into the phenomenon of flow recirculation on distillation sieve trays. A novel dye injection technique has been applied to a 1.81 m air-water simulation column and has yielded new information concerning the nature of the boundary layer of gas-liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1994-11, Vol.33 (11), p.2706-2711
Hauptverfasser: Biddulph, Michael W, Burton, Alan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an experimental investigation into the phenomenon of flow recirculation on distillation sieve trays. A novel dye injection technique has been applied to a 1.81 m air-water simulation column and has yielded new information concerning the nature of the boundary layer of gas-liquid biphase as it detaches from the column wall. The study has shown that recirculation is strongly influenced by inlet conditions. A critical factor is the underflow clearance between the inlet downcomer apron and the tray floor. As this clearance is increased, the size of the recirculating zones passes through a minimum, indicating the existence of two different mechanisms responsible for the nonuniform flow patterns. A significant implication of this work is that tray designers may minimize the impact of recirculating on mass transfer efficiency by appropriate choice of underflow clearance.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie00035a021