Thermal diffusivity of diamond films using a laser pulse technique
Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 1990-06, Vol.137 (6), p.1973-1976 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective in-plane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamonds/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film. The average effective diffusivity values are 1.47 + or - 0.03 and 1.83 + or - 0.10 yielding thermal diffusivity values of 7.46 + or - 0.90 and 7.33 + or - 0.70 sq cm/s respectively, for the two samples; the calculated thermal con ductivity values are 13.50 and 13.28 W/cmK, which are better than that of type 1a natural diamond. The phase and amplitude measurements give similar results. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1.2086842 |