Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, lower Eocene, Northwest Wyoming, U.S.A.)

Relative paleosol maturities are inversely proportional to the accumulation rates of the sediment upon which they formed, and are therefore excellent relative indicators of how much geologic time elapsed between any two horizons. An empirically-based model is advanced using paleosol maturities to es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Palaios 1993-02, Vol.8 (1), p.68-80
Hauptverfasser: Bown, Thomas M, Kraus, Mary J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Relative paleosol maturities are inversely proportional to the accumulation rates of the sediment upon which they formed, and are therefore excellent relative indicators of how much geologic time elapsed between any two horizons. An empirically-based model is advanced using paleosol maturities to estimate the relative geologic time separating any stratigraphic levels within the lower Eocene Willwood Formation. The revised Willwood time stratigraphy from this analysis helps evaluate the nature, tempo, and possible causes of three major episodes of mammalian appearance and disappearance. These faunal events are directly correlated with certain aspects of paleosol evolution in the Willwood Formation. That evolution is tied directly to climatic changes and to varying sediment accumulation rates in response to tectonism. The first faunal turnover occurs at the base of the Willwood Formation. It coincides with a major increase in pedogenic maturity, reflecting a major decrease in sediment accumulation rate, and accompanying general climatic warming at about the time of the Paleocene-Eocene boundary. Throughout the remainder of Willwood time, there was a gradual, yet continual, decrease in paleosol maturity and degree of hydromorphy, probably related to the progressive structural elevation of the Owl Creek antiform bounding the south and southeast margins of the Bighorn Basin. This gradual decrease was punctuated by two intervals of more significant decline in paleosol maturity and in the incidence of hydromorphic soils. Both intervals are also marked by faunal turnovers. These sedimentologic and biologic events may reflect tectonic pulses, periods when the rate of basin subsidence increased more rapidly.
ISSN:0883-1351
1938-5323
DOI:10.2307/3515222