Shell-model and Hartree-Fock calculations for even-mass O, Ne, and Mg nuclei
Shell-model and deformed Hartree-Fock plus BCS calculations are reported for even-even nuclei [sup 18[minus]30]O, [sup 18[minus]36]Ne, and [sup 20[minus]42]Mg; shell-model calculations additionally included [sup 38,40]Ne and [sup 44,46,48]Mg. Ground-state binding energies and 2[sub 1][sup +] quadrup...
Gespeichert in:
Veröffentlicht in: | Physical review. C, Nuclear physics Nuclear physics, 1999-09, Vol.60 (3), Article 034312 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shell-model and deformed Hartree-Fock plus BCS calculations are reported for even-even nuclei [sup 18[minus]30]O, [sup 18[minus]36]Ne, and [sup 20[minus]42]Mg; shell-model calculations additionally included [sup 38,40]Ne and [sup 44,46,48]Mg. Ground-state binding energies and 2[sub 1][sup +] quadrupole moments are calculated by both models. Shell-model calculations, aided by a new truncation method, include 2[sub 1][sup +] excitation energies and magnetic moments. Hartree-Fock calculations with SkI6, RATP, Z[sub [sigma]][sup [asterisk]], and SkX Skyrme forces include ground-state deformations and rms radii; SkI6 gives the best overall agreement with experiment. The two models are compared with each other and with experiment. Two-neutron separation energies, evidence for a neutron halo or skin in heavy O isotopes, and deformation of Ne and Mg isotopes are discussed. Both models indicate disappearance of the shell gap at N=28 (Mg), and the shell model does so additionally at N=20 (Ne and Mg). [copyright] [ital 1999] [ital The American Physical Society] |
---|---|
ISSN: | 0556-2813 1089-490X |
DOI: | 10.1103/PhysRevC.60.034312 |