Site-specific incorporation of 5-fluorotryptophan as a probe of the structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli: A sup 19 F nuclear magnetic resonance study
The structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli have been investigated by fluorine-19 nuclear magnetic resonance spectroscopy of 5-fluorotryptophan-labeled enzyme in conjunction with oligonucleotide-directed, site-specific mutagenesis. 5-Fluorotryptophan...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1990-04, Vol.29:13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli have been investigated by fluorine-19 nuclear magnetic resonance spectroscopy of 5-fluorotryptophan-labeled enzyme in conjunction with oligonucleotide-directed, site-specific mutagenesis. 5-Fluorotryptophan has been substituted for nine phenylalanine, tyrosine, and leucine residues in the enzyme molecule without loss of activity. The {sup 19}F signals from these additional tryptophan residues have been used as markers for sensitivity to substrate, exposure to aqueous solvent, and proximity to a lipid-bound spin-label. The nuclear magnetic resonance data show that two mutational sites, at amino acid residues 340 and 361, are near the lipid environment used to stabilize the enzyme. There are a number of amino acid residues on the carboxyl side of this region that are strongly sensitive to the aqueous solvent. The environment of the wide-type tryptophan residue at position 469 changes as a result of two of the substitution mutations, suggesting some amino acid residue-residue interactions. Secondary structure prediction methods indicate a possible binding site for the flavin adenine dinucleotide cofactor in the carboxyl end of the enzyme molecule. These results suggest that the membrane-bound D-lactate dehydrogenase may have the two-domain structure of many cytoplasmic dehydrogenases but with the addition of a membrane-binding domain between the catalytic and cofactor-binding domains. This type of three-domain structure may be of general significance for understanding the structure of membrane-bound proteins which do not traverse the lipid bilayer of membranes. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00465a017 |