Characterization of a thromboxane A2/prostaglandin H2 receptor in guinea pig lung membranes using a radioiodinated thromboxane mimetic

Thromboxane A2 (TXA2) and prostaglandin H2 (PGH2) are potent constrictors of airway smooth muscle and may mediate some of the pulmonary effects of leukotrienes. To date, the TXA2/PGH2 receptor in lung has not been well characterized. In this report, we describe the evaluation of the TXA2/PGH2 recept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 1991-01, Vol.39 (1), p.72-78
Hauptverfasser: D L Saussy, Jr, D E Mais, G P DubÃ, D E Magee, K A Brune, W L Kurtz, C M Williams
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thromboxane A2 (TXA2) and prostaglandin H2 (PGH2) are potent constrictors of airway smooth muscle and may mediate some of the pulmonary effects of leukotrienes. To date, the TXA2/PGH2 receptor in lung has not been well characterized. In this report, we describe the evaluation of the TXA2/PGH2 receptor in guinea pig lung membranes using the new radiolabeled TXA2 mimetic [1S(1 alpha,2 beta(5Z),3 alpha(1E,3S*),4 alpha)]-7-[3-(3-hydroxy-4-(4'- iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan-2-yl]-5-h eptenoic acid (IBOP). IBOP elicited a dose-dependent contraction of guinea pig lung parenchymal strips (EC50 = 3.03 +/- 0.97 nM, three experiments), which was blocked by the TXA2/PGH2 antagonists SQ29548 (pKB = 7.44 +/- 0.2, three experiments), BM13505 (pKB = 6.29 +/- 0.26, three experiments), and I-PTA-OH (pKB = 5.82 +/- 0.36, three experiments). In radioligand binding studies, the binding of [125I]IBOP to guinea pig lung membranes prepared from perfused lungs was saturable, displaceable, and dependent upon protein concentration. Binding was optimal at pH 6.5 and was enhanced by the addition of mono- and divalent cations. The standard assay buffer was 25 mM 3-(N-morpholino)propanesulfonic acid, pH 6.5, 100 mM NaCl, 5 mM MgCl2. Binding was inhibited by pretreatment with dithiothreitol, N-ethylmaleimide, or beta-mercaptoethanol. Binding was unaffected by the addition of guanine nucleotide analogs at concentrations up to 300 microM. Analysis of the time course of binding of [125]IBOP at 30 degrees yielded k-1 = 0.0447 min-1, k1 = 2.49 x 10(8) M-1 min-1, and Kd = k-1/k1 = 180 pM. Computer analysis of equilibrium binding studies using nonlinear methods (LUNDON-1) revealed a single class of noninteracting binding sites with a Kd of 86.9 +/- 11.9 pM and a Bmax of 81.8 +/- 7.7 fmol/mg of protein (three experiments). [125I]IBOP binding to guinea pig lung membranes was inhibited by a series of TXA2/PGH2 receptor agonists and antagonists, with a rank order different from that previously determined for washed guinea pig platelets (Spearman's r = 0.686, p greater than 0.05). [125I]IBOP binding to guinea pig lung membranes was also inhibited by the prostanoids prostaglandin D2, prostaglandin E2, prostaglandin F2 alpha, and 9 alpha,11 beta-prostaglandin F2, all of which have been proposed to act at the TXA2/PGH2 receptor in lung.
ISSN:0026-895X
1521-0111