Nuclear Collective Motion Within the O( N−1) Invariant Dynamics

Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 1993-05, Vol.223 (2), p.151-179
Hauptverfasser: Cerkaski, M., Mikhailov, I.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 151
container_title Annals of physics
container_volume 223
creator Cerkaski, M.
Mikhailov, I.N.
description Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the O( N − 1) scalar part of the potential.
doi_str_mv 10.1006/aphy.1993.1029
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6235871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491683710298</els_id><sourcerecordid>S0003491683710298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b8a4a6c1ef20849c0332406a6cb81de05d394722a2c15fe16185cedebc816dc33</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqWwMluIAYYUXztxnbEqf5VKu4Bgs1zHUY1Sp7JNpb4BM4_Ik-AoiI3JutY595z7IXQOZASE8Bu1Xe9HUJYsjbQ8QAMgJc8IK94O0YAQwrK8BH6MTkJ4JwQgL8QATRYfujHK42nbNEZHuzP4qY22dfjVxrV1OK4NXl7hxffnF1zjmdspb5WL-Hbv1MbqcIqOatUEc_b7DtHL_d3z9DGbLx9m08k80yynMVsJlSuuwdSUiLzUhDGaE56-VgIqQ4qKlfmYUkU1FLUBDqLQpjIrLYBXmrEhuuj3tiFaGbSNRq9161xqLTllhRhDEo16kfZtCN7UcuvtRvm9BCI7SrKjJDtKsqOUDJe9YauCVk3tldM2_LlyCqlHFy56mUkX7qzxXQHjUkHru_yqtf8l_ADpk3pL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cerkaski, M. ; Mikhailov, I.N.</creator><creatorcontrib>Cerkaski, M. ; Mikhailov, I.N.</creatorcontrib><description>Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the O( N − 1) scalar part of the potential.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1006/aphy.1993.1029</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>662110 -- General Theory of Particles &amp; Fields-- Theory of Fields &amp; Strings-- (1992-) ; BARYONS ; COLLECTIVE MODEL ; COMPARATIVE EVALUATIONS ; Computational techniques ; CRANKING MODEL ; DIFFERENTIAL EQUATIONS ; ELEMENTARY PARTICLES ; EQUATIONS ; EQUATIONS OF MOTION ; EVALUATION ; Exact sciences and technology ; FERMIONS ; HADRONS ; HAMILTONIANS ; HARMONIC POTENTIAL ; INVARIANCE PRINCIPLES ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; Molecular dynamics and particle methods ; NUCLEAR MODELS ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR POTENTIAL ; NUCLEONS ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POTENTIALS ; QUANTUM OPERATORS 663120 -- Nuclear Structure Models &amp; Methods-- (1992-) ; SYMMETRY ; WIGNER DISTRIBUTION</subject><ispartof>Annals of physics, 1993-05, Vol.223 (2), p.151-179</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-b8a4a6c1ef20849c0332406a6cb81de05d394722a2c15fe16185cedebc816dc33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aphy.1993.1029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4211853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6235871$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cerkaski, M.</creatorcontrib><creatorcontrib>Mikhailov, I.N.</creatorcontrib><title>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</title><title>Annals of physics</title><description>Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the O( N − 1) scalar part of the potential.</description><subject>662110 -- General Theory of Particles &amp; Fields-- Theory of Fields &amp; Strings-- (1992-)</subject><subject>BARYONS</subject><subject>COLLECTIVE MODEL</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational techniques</subject><subject>CRANKING MODEL</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>EVALUATION</subject><subject>Exact sciences and technology</subject><subject>FERMIONS</subject><subject>HADRONS</subject><subject>HAMILTONIANS</subject><subject>HARMONIC POTENTIAL</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>Molecular dynamics and particle methods</subject><subject>NUCLEAR MODELS</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR POTENTIAL</subject><subject>NUCLEONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POTENTIALS</subject><subject>QUANTUM OPERATORS 663120 -- Nuclear Structure Models &amp; Methods-- (1992-)</subject><subject>SYMMETRY</subject><subject>WIGNER DISTRIBUTION</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqWwMluIAYYUXztxnbEqf5VKu4Bgs1zHUY1Sp7JNpb4BM4_Ik-AoiI3JutY595z7IXQOZASE8Bu1Xe9HUJYsjbQ8QAMgJc8IK94O0YAQwrK8BH6MTkJ4JwQgL8QATRYfujHK42nbNEZHuzP4qY22dfjVxrV1OK4NXl7hxffnF1zjmdspb5WL-Hbv1MbqcIqOatUEc_b7DtHL_d3z9DGbLx9m08k80yynMVsJlSuuwdSUiLzUhDGaE56-VgIqQ4qKlfmYUkU1FLUBDqLQpjIrLYBXmrEhuuj3tiFaGbSNRq9161xqLTllhRhDEo16kfZtCN7UcuvtRvm9BCI7SrKjJDtKsqOUDJe9YauCVk3tldM2_LlyCqlHFy56mUkX7qzxXQHjUkHru_yqtf8l_ADpk3pL</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Cerkaski, M.</creator><creator>Mikhailov, I.N.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930501</creationdate><title>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</title><author>Cerkaski, M. ; Mikhailov, I.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b8a4a6c1ef20849c0332406a6cb81de05d394722a2c15fe16185cedebc816dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>662110 -- General Theory of Particles &amp; Fields-- Theory of Fields &amp; Strings-- (1992-)</topic><topic>BARYONS</topic><topic>COLLECTIVE MODEL</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational techniques</topic><topic>CRANKING MODEL</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>EVALUATION</topic><topic>Exact sciences and technology</topic><topic>FERMIONS</topic><topic>HADRONS</topic><topic>HAMILTONIANS</topic><topic>HARMONIC POTENTIAL</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>Molecular dynamics and particle methods</topic><topic>NUCLEAR MODELS</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR POTENTIAL</topic><topic>NUCLEONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POTENTIALS</topic><topic>QUANTUM OPERATORS 663120 -- Nuclear Structure Models &amp; Methods-- (1992-)</topic><topic>SYMMETRY</topic><topic>WIGNER DISTRIBUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerkaski, M.</creatorcontrib><creatorcontrib>Mikhailov, I.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerkaski, M.</au><au>Mikhailov, I.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</atitle><jtitle>Annals of physics</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>223</volume><issue>2</issue><spage>151</spage><epage>179</epage><pages>151-179</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the O( N − 1) scalar part of the potential.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/aphy.1993.1029</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 1993-05, Vol.223 (2), p.151-179
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_6235871
source Access via ScienceDirect (Elsevier)
subjects 662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-)
BARYONS
COLLECTIVE MODEL
COMPARATIVE EVALUATIONS
Computational techniques
CRANKING MODEL
DIFFERENTIAL EQUATIONS
ELEMENTARY PARTICLES
EQUATIONS
EQUATIONS OF MOTION
EVALUATION
Exact sciences and technology
FERMIONS
HADRONS
HAMILTONIANS
HARMONIC POTENTIAL
INVARIANCE PRINCIPLES
Mathematical methods in physics
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
Molecular dynamics and particle methods
NUCLEAR MODELS
NUCLEAR PHYSICS AND RADIATION PHYSICS
NUCLEAR POTENTIAL
NUCLEONS
PARTIAL DIFFERENTIAL EQUATIONS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
POTENTIALS
QUANTUM OPERATORS 663120 -- Nuclear Structure Models & Methods-- (1992-)
SYMMETRY
WIGNER DISTRIBUTION
title Nuclear Collective Motion Within the O( N−1) Invariant Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Collective%20Motion%20Within%20the%20O(%20N%E2%88%921)%20Invariant%20Dynamics&rft.jtitle=Annals%20of%20physics&rft.au=Cerkaski,%20M.&rft.date=1993-05-01&rft.volume=223&rft.issue=2&rft.spage=151&rft.epage=179&rft.pages=151-179&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1006/aphy.1993.1029&rft_dat=%3Celsevier_osti_%3ES0003491683710298%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0003491683710298&rfr_iscdi=true