Nuclear Collective Motion Within the O( N−1) Invariant Dynamics
Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collec...
Gespeichert in:
Veröffentlicht in: | Annals of physics 1993-05, Vol.223 (2), p.151-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 2 |
container_start_page | 151 |
container_title | Annals of physics |
container_volume | 223 |
creator | Cerkaski, M. Mikhailov, I.N. |
description | Assuming an
O(
N − 1) symmetry for the interaction term in the
N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of
O(
N − 1) invariant approach with the
Sp(6,
R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the
O(
N − 1) scalar part of the potential. |
doi_str_mv | 10.1006/aphy.1993.1029 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6235871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491683710298</els_id><sourcerecordid>S0003491683710298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b8a4a6c1ef20849c0332406a6cb81de05d394722a2c15fe16185cedebc816dc33</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqWwMluIAYYUXztxnbEqf5VKu4Bgs1zHUY1Sp7JNpb4BM4_Ik-AoiI3JutY595z7IXQOZASE8Bu1Xe9HUJYsjbQ8QAMgJc8IK94O0YAQwrK8BH6MTkJ4JwQgL8QATRYfujHK42nbNEZHuzP4qY22dfjVxrV1OK4NXl7hxffnF1zjmdspb5WL-Hbv1MbqcIqOatUEc_b7DtHL_d3z9DGbLx9m08k80yynMVsJlSuuwdSUiLzUhDGaE56-VgIqQ4qKlfmYUkU1FLUBDqLQpjIrLYBXmrEhuuj3tiFaGbSNRq9161xqLTllhRhDEo16kfZtCN7UcuvtRvm9BCI7SrKjJDtKsqOUDJe9YauCVk3tldM2_LlyCqlHFy56mUkX7qzxXQHjUkHru_yqtf8l_ADpk3pL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cerkaski, M. ; Mikhailov, I.N.</creator><creatorcontrib>Cerkaski, M. ; Mikhailov, I.N.</creatorcontrib><description>Assuming an
O(
N − 1) symmetry for the interaction term in the
N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of
O(
N − 1) invariant approach with the
Sp(6,
R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the
O(
N − 1) scalar part of the potential.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1006/aphy.1993.1029</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-) ; BARYONS ; COLLECTIVE MODEL ; COMPARATIVE EVALUATIONS ; Computational techniques ; CRANKING MODEL ; DIFFERENTIAL EQUATIONS ; ELEMENTARY PARTICLES ; EQUATIONS ; EQUATIONS OF MOTION ; EVALUATION ; Exact sciences and technology ; FERMIONS ; HADRONS ; HAMILTONIANS ; HARMONIC POTENTIAL ; INVARIANCE PRINCIPLES ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; Molecular dynamics and particle methods ; NUCLEAR MODELS ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR POTENTIAL ; NUCLEONS ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POTENTIALS ; QUANTUM OPERATORS 663120 -- Nuclear Structure Models & Methods-- (1992-) ; SYMMETRY ; WIGNER DISTRIBUTION</subject><ispartof>Annals of physics, 1993-05, Vol.223 (2), p.151-179</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-b8a4a6c1ef20849c0332406a6cb81de05d394722a2c15fe16185cedebc816dc33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aphy.1993.1029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4211853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6235871$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cerkaski, M.</creatorcontrib><creatorcontrib>Mikhailov, I.N.</creatorcontrib><title>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</title><title>Annals of physics</title><description>Assuming an
O(
N − 1) symmetry for the interaction term in the
N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of
O(
N − 1) invariant approach with the
Sp(6,
R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the
O(
N − 1) scalar part of the potential.</description><subject>662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-)</subject><subject>BARYONS</subject><subject>COLLECTIVE MODEL</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational techniques</subject><subject>CRANKING MODEL</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>EVALUATION</subject><subject>Exact sciences and technology</subject><subject>FERMIONS</subject><subject>HADRONS</subject><subject>HAMILTONIANS</subject><subject>HARMONIC POTENTIAL</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>Molecular dynamics and particle methods</subject><subject>NUCLEAR MODELS</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR POTENTIAL</subject><subject>NUCLEONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POTENTIALS</subject><subject>QUANTUM OPERATORS 663120 -- Nuclear Structure Models & Methods-- (1992-)</subject><subject>SYMMETRY</subject><subject>WIGNER DISTRIBUTION</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqWwMluIAYYUXztxnbEqf5VKu4Bgs1zHUY1Sp7JNpb4BM4_Ik-AoiI3JutY595z7IXQOZASE8Bu1Xe9HUJYsjbQ8QAMgJc8IK94O0YAQwrK8BH6MTkJ4JwQgL8QATRYfujHK42nbNEZHuzP4qY22dfjVxrV1OK4NXl7hxffnF1zjmdspb5WL-Hbv1MbqcIqOatUEc_b7DtHL_d3z9DGbLx9m08k80yynMVsJlSuuwdSUiLzUhDGaE56-VgIqQ4qKlfmYUkU1FLUBDqLQpjIrLYBXmrEhuuj3tiFaGbSNRq9161xqLTllhRhDEo16kfZtCN7UcuvtRvm9BCI7SrKjJDtKsqOUDJe9YauCVk3tldM2_LlyCqlHFy56mUkX7qzxXQHjUkHru_yqtf8l_ADpk3pL</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Cerkaski, M.</creator><creator>Mikhailov, I.N.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930501</creationdate><title>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</title><author>Cerkaski, M. ; Mikhailov, I.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b8a4a6c1ef20849c0332406a6cb81de05d394722a2c15fe16185cedebc816dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-)</topic><topic>BARYONS</topic><topic>COLLECTIVE MODEL</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational techniques</topic><topic>CRANKING MODEL</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>EVALUATION</topic><topic>Exact sciences and technology</topic><topic>FERMIONS</topic><topic>HADRONS</topic><topic>HAMILTONIANS</topic><topic>HARMONIC POTENTIAL</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>Molecular dynamics and particle methods</topic><topic>NUCLEAR MODELS</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR POTENTIAL</topic><topic>NUCLEONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POTENTIALS</topic><topic>QUANTUM OPERATORS 663120 -- Nuclear Structure Models & Methods-- (1992-)</topic><topic>SYMMETRY</topic><topic>WIGNER DISTRIBUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerkaski, M.</creatorcontrib><creatorcontrib>Mikhailov, I.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerkaski, M.</au><au>Mikhailov, I.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Collective Motion Within the O( N−1) Invariant Dynamics</atitle><jtitle>Annals of physics</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>223</volume><issue>2</issue><spage>151</spage><epage>179</epage><pages>151-179</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Assuming an
O(
N − 1) symmetry for the interaction term in the
N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of
O(
N − 1) invariant approach with the
Sp(6,
R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the
O(
N − 1) scalar part of the potential.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/aphy.1993.1029</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 1993-05, Vol.223 (2), p.151-179 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_6235871 |
source | Access via ScienceDirect (Elsevier) |
subjects | 662110 -- General Theory of Particles & Fields-- Theory of Fields & Strings-- (1992-) BARYONS COLLECTIVE MODEL COMPARATIVE EVALUATIONS Computational techniques CRANKING MODEL DIFFERENTIAL EQUATIONS ELEMENTARY PARTICLES EQUATIONS EQUATIONS OF MOTION EVALUATION Exact sciences and technology FERMIONS HADRONS HAMILTONIANS HARMONIC POTENTIAL INVARIANCE PRINCIPLES Mathematical methods in physics MATHEMATICAL MODELS MATHEMATICAL OPERATORS Molecular dynamics and particle methods NUCLEAR MODELS NUCLEAR PHYSICS AND RADIATION PHYSICS NUCLEAR POTENTIAL NUCLEONS PARTIAL DIFFERENTIAL EQUATIONS Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS POTENTIALS QUANTUM OPERATORS 663120 -- Nuclear Structure Models & Methods-- (1992-) SYMMETRY WIGNER DISTRIBUTION |
title | Nuclear Collective Motion Within the O( N−1) Invariant Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Collective%20Motion%20Within%20the%20O(%20N%E2%88%921)%20Invariant%20Dynamics&rft.jtitle=Annals%20of%20physics&rft.au=Cerkaski,%20M.&rft.date=1993-05-01&rft.volume=223&rft.issue=2&rft.spage=151&rft.epage=179&rft.pages=151-179&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1006/aphy.1993.1029&rft_dat=%3Celsevier_osti_%3ES0003491683710298%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0003491683710298&rfr_iscdi=true |