Nuclear Collective Motion Within the O( N−1) Invariant Dynamics

Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 1993-05, Vol.223 (2), p.151-179
Hauptverfasser: Cerkaski, M., Mikhailov, I.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assuming an O( N − 1) symmetry for the interaction term in the N-body Hamiltonian we find a closed subsystem of equations describing the collective motion in a classical way. When studying, in the group geometric way, the mutual correspondency of O( N − 1) invariant approach with the Sp(6, R) collective model we find that the nucleons move along trajectories determined by an effective one-body time-dependent harmonic potential being a function of the collective variables. The relation between the equations for the collective motion and the system of equations found elsewhere for the second-order moments of the Wigner distribution function is discussed. A class of stationary solutions to the collective equations of motion leads to the cranking model with the selfconsistency relations depending on the O( N − 1) scalar part of the potential.
ISSN:0003-4916
1096-035X
DOI:10.1006/aphy.1993.1029