Assignment of proton resonances, identification of secondary structural elements, and analysis of backbone chemical shifts for the C102T variant of yeast iso-1-cytochrome c and horse cytochrome c
Resonance assignments for the main-chain, side-chain, exchangeable side chain, and heme protons of the C102T variant of Saccharomyces cerevisiae iso-1-cytochrome c in both oxidation states (with the exception of Gly-83) are reported. (We have also independently assigned horse cytochrome c.) Some add...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1990-07, Vol.29 (30), p.6994-7003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resonance assignments for the main-chain, side-chain, exchangeable side chain, and heme protons of the C102T variant of Saccharomyces cerevisiae iso-1-cytochrome c in both oxidation states (with the exception of Gly-83) are reported. (We have also independently assigned horse cytochrome c.) Some additional assignments for the horse protein extend those of Wand and co-workers [Wand, A. J., Di Stefano, D. L., Feng, Y., Roder, H., & Englander, S. W. (1989) Biochemistry 28, 186-194; Feng, Y., Roder, H., Englander, S. W., Wand, A. J., & Di Stefano, D. L. (1989) Biochemistry 28, 195-203]. Qualitative interpretation of nuclear Overhauser enhancement data allows the secondary structure of these two proteins to be described relative to crystal structures. Comparison of the chemical shift of the backbone protons of the C102T variant and horse protein reveals significant differences resulting from amino acid substitution at positions 56 and 57 and further substitutions between residue 60 and residue 69. Although the overall folding of yeast iso-1-cytochrome c and horse cytochrome c is very similar, there can be large differences in chemical shift for structurally equivalent residues. Chemical shift differences of amide protons (and to a lesser extent alpha protons) represent minute changes in hydrogen bonding. Therefore, great care must be taken in the use of differences in chemical shift as evidence for structural changes even between highly homologous proteins. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00482a007 |