Incorporation of a subacute test with zebra fish into a hierarchical system for evaluating the effect of toxicants in the aquatic environment

Single-species laboratory tests were used to assess the acute toxicity of halogenated phenolic compounds. No single test system was most sensitive to all of the compounds examined, substantial variations in the sensitivity of the various organisms were noted, and there was no correlation between the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 1990-08, Vol.20 (1), p.82-97
Hauptverfasser: Neilson, Alasdair H., Allard, Ann-Sofie, Fischer, Stellan, Malmberg, Marianne, Viktor, Tomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-species laboratory tests were used to assess the acute toxicity of halogenated phenolic compounds. No single test system was most sensitive to all of the compounds examined, substantial variations in the sensitivity of the various organisms were noted, and there was no correlation between the toxicities assayed with different test systems. The zebra fish ( Brachydanio rerio) embryo/larvae system was used to examine subacute effects using two of the compounds, and a protocol was developed with 6 weeks preexposure to the toxicant. Preexposure decreased the lowest observable effect concentration by a factor of about 4, and the effect was completely reversible during a 6-week postexposure period in the absence of the toxicant. An enclosed system for carrying out the zebra fish embryo/larvae test was developed and evaluated with three neutral volatile compounds: the median survival time and the frequency of occurrence of deformation were examined as end points. The effect of pH on toxicity was evaluated in buffered media for four of the test systems: toxicity increased markedly at the lower pH values, and it could be shown that the ionized forms of the phenols were not the only contributors to toxicity. It is proposed that the zebra fish system incorporating preexposure could be incorporated into a hierarchical system using a range of organisms for assessing acute toxicity in single species under laboratory conditions and multicomponent systems simulating natural ecosystems.
ISSN:0147-6513
1090-2414
DOI:10.1016/0147-6513(90)90048-A