Samarium-Neodymium Direct Dating of Fluorite Mineralization
The direct dating of many styles of hydrothermal mineralization has proved difficult, limiting understanding of the geological processes that lead to crustal fluid flow and the formation of major ore deposits. The hydrothermal mineral fluorite (CaF$_2$) displays large variations in rare earth elemen...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1991-05, Vol.252 (5008), p.949-951 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The direct dating of many styles of hydrothermal mineralization has proved difficult, limiting understanding of the geological processes that lead to crustal fluid flow and the formation of major ore deposits. The hydrothermal mineral fluorite (CaF$_2$) displays large variations in rare earth element (REE) abundance and samarium/neodymium ratios within a single vein. Samarium-neodymium dating of fluorite from the classic granite-hosted tin deposits of southwest England demonstrates its use as a precise chronometer of mineralization. The concentrations of light rare earth elements (LREEs) in the fluorites are highly variable and suggest the coeval precipitation of an LREE-rich phase as the most likely cause of the extreme variation in samarium/neodymium ratios. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.252.5008.949 |