Theory of shapiro steps in Josephson-junction arrays and their topology
A simple theory of Shapiro steps in a Josephson-junction (JJ) array immersed in a magnetic field is presented. It is argued that the system can be regarded as the superposition of a JJ array in zero field and a vortex lattice generated by the magnetic field. The subsystems obey the resistively-shunt...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter Condensed matter, 1991-02, Vol.43 (4B), p.3720-3723 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple theory of Shapiro steps in a Josephson-junction (JJ) array immersed in a magnetic field is presented. It is argued that the system can be regarded as the superposition of a JJ array in zero field and a vortex lattice generated by the magnetic field. The subsystems obey the resistively-shunted-junction equations of motion, and interference effects result in steps at 1/{ital q},2/{ital q},. . . for a filling factor {ital p}/{ital q}. The exactness of the steps is shown to result from the topological quantization of the order parameter for dissipative systems. |
---|---|
ISSN: | 0163-1829 1095-3795 |
DOI: | 10.1103/PhysRevB.43.3720 |