Theory of shapiro steps in Josephson-junction arrays and their topology

A simple theory of Shapiro steps in a Josephson-junction (JJ) array immersed in a magnetic field is presented. It is argued that the system can be regarded as the superposition of a JJ array in zero field and a vortex lattice generated by the magnetic field. The subsystems obey the resistively-shunt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter Condensed matter, 1991-02, Vol.43 (4B), p.3720-3723
Hauptverfasser: KVALE, M, HEBBOUL, S. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple theory of Shapiro steps in a Josephson-junction (JJ) array immersed in a magnetic field is presented. It is argued that the system can be regarded as the superposition of a JJ array in zero field and a vortex lattice generated by the magnetic field. The subsystems obey the resistively-shunted-junction equations of motion, and interference effects result in steps at 1/{ital q},2/{ital q},. . . for a filling factor {ital p}/{ital q}. The exactness of the steps is shown to result from the topological quantization of the order parameter for dissipative systems.
ISSN:0163-1829
1095-3795
DOI:10.1103/PhysRevB.43.3720