Effect of nitrogen dioxide on human nasal epithelium

The nasal epithelium of young adult white men in good health was evaluated by electron microscopy in a condition blind fashion relative to exposures of 2 ppm nitrogen dioxide (NO2) or clean air for 4 h. The exposure protocol involved two separate exposures of the same individuals to NO2 or clean air...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory cell and molecular biology 1993-09, Vol.9 (3), p.264-270
Hauptverfasser: CARSON, J. L, COLLIER, A. M, HU, S.-C. S, DEVLIN, R. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nasal epithelium of young adult white men in good health was evaluated by electron microscopy in a condition blind fashion relative to exposures of 2 ppm nitrogen dioxide (NO2) or clean air for 4 h. The exposure protocol involved two separate exposures of the same individuals to NO2 or clean air approximately 3 wk apart. We found qualitative and quantitative evidence that luminal border membranes of ciliated cells were ultrastructurally altered in six of seven samples of nasal epithelium obtained following NO2 exposures, although subsequent morphometric statistical analyses were not significant. This alteration was characterized by cilia containing excess matrix in which individual or, more commonly, multiple ciliary axonemes were embedded, and by vesiculations of luminal border ciliary membranes, a pattern less common in clean air-exposed control specimens. Although these patterns were not widespread, their morphology was consistent with findings of previous animal studies involving acute and chronic exposure to NO2. Our findings suggest that adverse effects on mucociliary function in normal humans due to acute exposure to low levels of NO2 are most likely minimal. However, in view of other reports of NO2 exposure in laboratory animals documenting ciliary injury, our observations support a view that similar patterns might appear more prominently with higher NO2 levels and/or more extended exposure intervals.
ISSN:1044-1549
1535-4989
DOI:10.1165/ajrcmb/9.3.264