The accretion of interplanetary dust by Ap and Am stars
Accretion of interplanetary dust and comets by A-type stars is investigated to see whether this process can explain the overabundances of heavy elements in Ap and Am stars. The dust particles spiral in by the Poynting-Robertson effect and evaporate above the star. This process is evaluated by consid...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 1989-02, Vol.337 (1), p.414-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accretion of interplanetary dust and comets by A-type stars is investigated to see whether this process can explain the overabundances of heavy elements in Ap and Am stars. The dust particles spiral in by the Poynting-Robertson effect and evaporate above the star. This process is evaluated by considering the evolution of silicate and graphite particles in the radiation field of Alpha Leo (B7 V). It is found that graphite particles evaporate above 20 stellar radii and silicate dust grains above 50 stellar radii. The evaporated atoms will be quickly ionized. In the case of Am stars the ions will wander off and not reach the photosphere, but in the case of Ap stars they can be trapped by the magnetic field of the star and reach the surface. The magnetosphere of a typical Ap star is modeled, and the fate of the ions is studied. The efficiency of accretion from the magnetosphere is sensitive to the presence of any plasma in the magnetosphere. The comet impact process is found capable of producing the abundance anomalies in Ap as well as Am stars, assuming that the comet impact rate is 0.03/yr, nearly the same as in the solar system. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/167112 |