Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors

The relativistic time-dependent multipole expansion for electromagnetism and linearized gravity in the region outside a spatially compact source has been obtained directly using the formalism of irreducible Cartesian (i.e., symmetric trace-free) tensors. In the electromagnetic case, our results conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 1991-05, Vol.43 (10), p.3259-3272
Hauptverfasser: Damour, T, Iyer, BR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relativistic time-dependent multipole expansion for electromagnetism and linearized gravity in the region outside a spatially compact source has been obtained directly using the formalism of irreducible Cartesian (i.e., symmetric trace-free) tensors. In the electromagnetic case, our results confirm the validity of the results obtained earlier by Campbell, Macek, and Morgan using the Debye potential formalism. However, in the more complicated linearized gravity case, the greater algebraic transparence of the Cartesian multipole approach has allowed us to obtain, for the first time, fully correct closed-form expressions for the time-dependent mass and spin multipole moments (the results of Campbell {ital et} {ital al}. for the mass moments turning out to be incorrect). The first two terms in the slow-motion expansion of the gravitational moments are explicitly calculated and shown to be equivalent to earlier results by Thorne and by Blanchet and Damour.
ISSN:0556-2821
1089-4918
DOI:10.1103/PhysRevD.43.3259