Multigrid Analysis of Finite Element Methods with Numerical Integration
We analyze multigrid convergence rates when elliptic boundary value problems are discretized using finite element methods with numerical integration. The resulting discrete problem does not fall into the standard variational framework for analyzing multigrid methods since the bilinear forms on diffe...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 1991-04, Vol.56 (194), p.409-436 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze multigrid convergence rates when elliptic boundary value problems are discretized using finite element methods with numerical integration. The resulting discrete problem does not fall into the standard variational framework for analyzing multigrid methods since the bilinear forms on different grid levels are not suitably related to each other. We first discuss extensions of the standard variational multigrid theory and then apply these results to the case of numerical quadrature. In particular, it is shown that the $\mathscr{V}$-cycle algorithm has a convergence rate independent of grid size under suitable conditions. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/S0025-5718-1991-1066832-7 |