Magic bases, metric ansaetze and generalized graph theories in the Virasoro master equation
The authors define a class of magic Lie group bases in which the Virasoro master equation admits a class of simple metric ansaetze (g{sub metric}), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of un...
Gespeichert in:
Veröffentlicht in: | Annals of physics 1991-11, Vol.212:1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors define a class of magic Lie group bases in which the Virasoro master equation admits a class of simple metric ansaetze (g{sub metric}), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of So(n) and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). A new phenomenon is observed in the high-level comparison of SU(n){sub metric}: Due to the trigonometric structure constants of the Pauli-like basis, irrational central charge is clearly visible at finite order of the expansion. They also define the sine-area graphs of SU(n), which label the conformal field theories of SU(n){sub metric} and note that, in a similar fashion, each magic basis of g defines a generalize graph theory on g which labels the conformal field theories of g{sub metric}. |
---|---|
ISSN: | 0003-4916 1096-035X |
DOI: | 10.1016/0003-4916(91)90371-E |