Atomic Stabilization by Super-Intense Lasers
Supercomputer simulations predict the creation of an unexpectedly stable form of atomic matter when ordinary atoms are irradiated by very intense, high-frequency laser pulses. In the rising edge of a very intense pulse of ionizing radiation, the atom's wave function distorts adiabatically into...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1993-11, Vol.262 (5137), p.1229-1233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supercomputer simulations predict the creation of an unexpectedly stable form of atomic matter when ordinary atoms are irradiated by very intense, high-frequency laser pulses. In the rising edge of a very intense pulse of ionizing radiation, the atom's wave function distorts adiabatically into a distribution with two well-separated peaks. As the intensity increases, the peak spacing increases so that the atomic electron spends more time far from the nucleus and the ionization rate decreases. This leads to the surprising and counter-intuitive result that the atom becomes more stable as the ionizing radiation gets stronger. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.262.5137.1229 |