Nonlinear network dynamics on earthquake fault systems

Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2001-10, Vol.87 (14), p.148501-148501, Article 148501
Hauptverfasser: Rundle, P B, Rundle, J B, Tiampo, K F, Martins, J S, McGinnis, S, Klein, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148501
container_issue 14
container_start_page 148501
container_title Physical review letters
container_volume 87
creator Rundle, P B
Rundle, J B
Tiampo, K F
Martins, J S
McGinnis, S
Klein, W
description Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.
doi_str_mv 10.1103/PhysRevLett.87.148501
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_40277693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71209557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-cd80397fcb44eb747a994aed3ea061637a7663158b7d54f47da08ebad26f6383</originalsourceid><addsrcrecordid>eNpNkF1Lw0AQRRdRbK3-BCUg-JY6293sbB5F_IKiIn1fNpsJjc1Hm90o-fdGWtCngeHcO8Nh7JLDnHMQt-_rwX_Q15JCmGucc6kT4EdsygHTGDmXx2wKIHicAuCEnXn_CQB8ofQpm3CeaFCop0y9tk1VNmS7qKHw3XabKB8aW5fOR20Tjfuw3vV2Q1Fh-ypEfvCBan_OTgpbebo4zBlbPT6s7p_j5dvTy_3dMnZCY4hdrkGkWLhMSspQok1TaSkXZEFxJdCiUmJ8JsM8kYXE3IKmzOYLVSihxYxd72tbH0rjXRnIrV3bNOSCkbBAVKkYqZs9te3aXU8-mLr0jqrKNtT23iBfQJokOILJHnRd631Hhdl2ZW27wXAwv1bNP6tGo9lbHXNXhwN9VlP-lzpoFD9u-HXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71209557</pqid></control><display><type>article</type><title>Nonlinear network dynamics on earthquake fault systems</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Rundle, P B ; Rundle, J B ; Tiampo, K F ; Martins, J S ; McGinnis, S ; Klein, W</creator><creatorcontrib>Rundle, P B ; Rundle, J B ; Tiampo, K F ; Martins, J S ; McGinnis, S ; Klein, W</creatorcontrib><description>Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.87.148501</identifier><identifier>PMID: 11580678</identifier><language>eng</language><publisher>United States: The American Physical Society</publisher><subject>CALIFORNIA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EARTHQUAKES ; FRICTION ; NEURAL NETWORKS ; PHYSICS ; SPACE-TIME ; TOPOLOGY</subject><ispartof>Physical review letters, 2001-10, Vol.87 (14), p.148501-148501, Article 148501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-cd80397fcb44eb747a994aed3ea061637a7663158b7d54f47da08ebad26f6383</citedby><cites>FETCH-LOGICAL-c387t-cd80397fcb44eb747a994aed3ea061637a7663158b7d54f47da08ebad26f6383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11580678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/40277693$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rundle, P B</creatorcontrib><creatorcontrib>Rundle, J B</creatorcontrib><creatorcontrib>Tiampo, K F</creatorcontrib><creatorcontrib>Martins, J S</creatorcontrib><creatorcontrib>McGinnis, S</creatorcontrib><creatorcontrib>Klein, W</creatorcontrib><title>Nonlinear network dynamics on earthquake fault systems</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.</description><subject>CALIFORNIA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EARTHQUAKES</subject><subject>FRICTION</subject><subject>NEURAL NETWORKS</subject><subject>PHYSICS</subject><subject>SPACE-TIME</subject><subject>TOPOLOGY</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpNkF1Lw0AQRRdRbK3-BCUg-JY6293sbB5F_IKiIn1fNpsJjc1Hm90o-fdGWtCngeHcO8Nh7JLDnHMQt-_rwX_Q15JCmGucc6kT4EdsygHTGDmXx2wKIHicAuCEnXn_CQB8ofQpm3CeaFCop0y9tk1VNmS7qKHw3XabKB8aW5fOR20Tjfuw3vV2Q1Fh-ypEfvCBan_OTgpbebo4zBlbPT6s7p_j5dvTy_3dMnZCY4hdrkGkWLhMSspQok1TaSkXZEFxJdCiUmJ8JsM8kYXE3IKmzOYLVSihxYxd72tbH0rjXRnIrV3bNOSCkbBAVKkYqZs9te3aXU8-mLr0jqrKNtT23iBfQJokOILJHnRd631Hhdl2ZW27wXAwv1bNP6tGo9lbHXNXhwN9VlP-lzpoFD9u-HXs</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Rundle, P B</creator><creator>Rundle, J B</creator><creator>Tiampo, K F</creator><creator>Martins, J S</creator><creator>McGinnis, S</creator><creator>Klein, W</creator><general>The American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20011001</creationdate><title>Nonlinear network dynamics on earthquake fault systems</title><author>Rundle, P B ; Rundle, J B ; Tiampo, K F ; Martins, J S ; McGinnis, S ; Klein, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-cd80397fcb44eb747a994aed3ea061637a7663158b7d54f47da08ebad26f6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>CALIFORNIA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EARTHQUAKES</topic><topic>FRICTION</topic><topic>NEURAL NETWORKS</topic><topic>PHYSICS</topic><topic>SPACE-TIME</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rundle, P B</creatorcontrib><creatorcontrib>Rundle, J B</creatorcontrib><creatorcontrib>Tiampo, K F</creatorcontrib><creatorcontrib>Martins, J S</creatorcontrib><creatorcontrib>McGinnis, S</creatorcontrib><creatorcontrib>Klein, W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rundle, P B</au><au>Rundle, J B</au><au>Tiampo, K F</au><au>Martins, J S</au><au>McGinnis, S</au><au>Klein, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear network dynamics on earthquake fault systems</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2001-10-01</date><risdate>2001</risdate><volume>87</volume><issue>14</issue><spage>148501</spage><epage>148501</epage><pages>148501-148501</pages><artnum>148501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.</abstract><cop>United States</cop><pub>The American Physical Society</pub><pmid>11580678</pmid><doi>10.1103/PhysRevLett.87.148501</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2001-10, Vol.87 (14), p.148501-148501, Article 148501
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_40277693
source APS: American Physical Society E-Journals (Physics)
subjects CALIFORNIA
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
EARTHQUAKES
FRICTION
NEURAL NETWORKS
PHYSICS
SPACE-TIME
TOPOLOGY
title Nonlinear network dynamics on earthquake fault systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20network%20dynamics%20on%20earthquake%20fault%20systems&rft.jtitle=Physical%20review%20letters&rft.au=Rundle,%20P%20B&rft.date=2001-10-01&rft.volume=87&rft.issue=14&rft.spage=148501&rft.epage=148501&rft.pages=148501-148501&rft.artnum=148501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.87.148501&rft_dat=%3Cproquest_osti_%3E71209557%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71209557&rft_id=info:pmid/11580678&rfr_iscdi=true