Spectral scheme for atomic structure calculations in density functional theory
In this study, we present a spectral scheme for atomic structure calculations in pseudopotential Kohn-Sham density functional theory. In particular, after applying an exponential transformation of the radial coordinates, we employ global polynomial interpolation on a Chebyshev grid, with derivative...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2024-11, Vol.308 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we present a spectral scheme for atomic structure calculations in pseudopotential Kohn-Sham density functional theory. In particular, after applying an exponential transformation of the radial coordinates, we employ global polynomial interpolation on a Chebyshev grid, with derivative operators approximated using the Chebyshev differentiation matrix, and integrations using Clenshaw-Curtis quadrature. We demonstrate the accuracy and efficiency of the scheme through spin-polarized and unpolarized calculations for representative atoms, while considering local, semilocal, and hybrid exchange-correlation functionals. In particular, we find that $\mathcal{O}$(200) grid points are sufficient to achieve an accuracy of 1 microhartree in the eigenvalues for optimized norm conserving Vanderbilt pseudopotentials spanning the periodic table from atomic number Ζ = 1 to 83. |
---|---|
ISSN: | 0010-4655 |
DOI: | 10.1016/j.cpc.2024.109448 |